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The series of publications is focused on set-theoretical properties of automata on
trees. I started to be interested in this topic in 2008. My earlier work concerns set-
theoretical properties of other mathematical structures such as function spaces,
measures and real functions. The description below consists of the introduction,
describing connections between the automata theory and set theory and three
chapters describing content of the papers in the series.

Introduction. In the beginning of the 20th century, along with axiomatization
of mathematical theories, for a given formula ¢ written in the language of set
theory, arithmetic or more generally in the first order logic, it became a realistic
perspective to decide automatically whether ¢ can be deduced from given ax-
ioms. This research project, Entscheidungsproblem or in modern terminology
a classical decision problem, was formulated by D. Hilbert in year 1928 in the
book [27, page 8]]ﬂ This problem turned to be very inspiring for the develop-
ment of logic, however the answers have not completely fulfilled the expectations
of Hilbert. On one hand, Godel’s Completeness Theorem confirmed that every
formula being a consequence of the axioms can be formally deduced from the ax-
ioms. On the other hand, Godel’s Incompleteness Theorem showed that most of
mathematical theories (including arithmetic) cannot be completely axiomatized.
Finally, A. Church and A. Turing (|16} |63|) discovered, that the deduction from
the axioms cannot be turned in an automatic decision process; that is, in cases
when the deduction does not exist, in general one cannot expect an automatic
answer.

The above results tell us that the contemporary computers cannot solve the
Riemann Hypothesis or find all errors in the Windows Operating System. Along
with the negative results related to the Entscheidungsproblem, already in the
1930-ties there were shown some positive theorems. A. Tarski proved (|62]) that if
we limit our attention to the theory of the reals with addition and multiplication,
then there exists an algorithm which for a given sentence deduces a proof or
says that the formula is false. M. Presburger (|52]) proved an analogous result
about the theory of the natural numbers with addition. From the mathematical
perspective both theories are not very rich, however one can express in them a
correctness of computer programs which can be written in the language of linear
programming. Despite the fact, that in full generality Entscheidungsproblem was
solved in the negative, these two positive results show that decidable theories may
have very serious practical impact.

1See also Section 12 in the 3rd Chapter of book [26] written in the same period, as well as
modern source [11].
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I claim that along with discoveries of even stronger decidable theories, we are
coming closer and closer to algorithmic problems which pose serious mathematical
challenges. In particular, some of these issues can be analyzed using methods of
set theory. This claim is illustrated by the evolution of decidable theories from
the Presburger arithmetic to two monadic theories. The monadic theories proved
to be decidable but as we show in the paper , they are rather hard to extend
without loosing decidability. Before we move to this topic, I would like to recall
some well known facts about the second order theories.

Taking into account that already the first order theory of the natural numbers
with addition and multiplication is undecidable, clearly the second order theory
of the natural numbers with addition and multiplication is undecidable. Indeed,
the second order theory of natural numbers without any operations or relations
is already undecidable, because one can define in it the addition and multipli-
cation (|55]). Similarly, even if we restrict the second order quantification only
to subsets, that is if we limit our attention to the monadic second order logic,
then having addition, one can already define multiplication on the natural num-
bers ([55]), hence the monadic second order theory of the natural numbers with
addition is undecidable.

Besides these two remarks, in the article of R. Robinson [55| are mentioned
two questions posed by Tarski during a lecture:

1. Is 1t possible to define in the monadic second order logic, the addition
on the natural numbers only in terms of the successor ope'ratz'on

2. Is there an algorithm deciding the monadic second order theory of the
natural numbers with the successor operation?

Answers to these questions were given in 1960 by R. Biichi (|14]), who showed that
the theory S18S, that is the monadic second order theory of the natural numbers
with the successor operation is decidable. This gives a positive answer to the
second Problem and a negative answer to the first Problem. Biichi reduced the
problem of satisfiability of a given formula ¢ to the question about existence of a
run of a certain automaton A, on infinite words (see Figure . The last question
can easily be decided through inspection of the structure of the automaton A,,.

As in the case of the theory of the real numbers with addition and multipli-
cation and the Presburger arithmetic, the decidability of the theory S1S implies
interesting consequences for the verification of some special programs. At the be-
ginning it seemed to be an interesting curiosity, however over time this method
was adapted to the verification of logical circuits and subsets of bigger programs
and currently is applied on the industrial scale. The idea of the verification is very
simple: as far as the desired property of the circuit is expressible in S1S or another
theory decidable thanks to the Biichi algorithm, a computer can automatically
establish if the property of the circuit holds and if the answer is negative, then the

2Using the successor operation one can encode the Presburger arithmetic, but this problem
is not about the encoding of arithmetic, but about the expressibility of the relation {(x,y,z) :
x+y=zh
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Figure 1: The automaton A, corresponding to the formula @(X,Y) = X C Y.
The alphabet consists of the symbols {8, (1), (1), } }, the initial and accepting state is

1, the transition >O< means that on the first coordinate O is expected and there are

no restrictions on the second coordinate, the transition § means that arbitrary

numbers are accepted on both coordinates.

computer may generate a counterexample. Obviously, practical uses are limited
by the availability of programming tools convenient for the engineers and logics
used in practice, such as LTL , may have considerable different syntax than the
monadic logic.

The above mentioned automaton A on infinite words consists of a finite
alphabet A, a finite set of states Q4 along with a subset of accepting states
Fa C Qu, an initial state qo € Q4 and a set of transitions A4 C Q4 X A X Q4.
The automaton A one can consider as a finite graph, with the set Q 4 as the set
of vertices. Elements of the set A4 can be interpreted as edges of the graph with
labels from the set A. An infinite word w € A is accepted by the automaton A if
there exists a sequence of transitions 8¢, 81, ... € A4, such that 5o = (qo,wo, q1),
51 =(q1,w1,q2) and so on. The accepting condition requires, that for infinitely
many n € w, the state q,, belongs to the set of accepting states F 4.

The result of Biichi was extended by M. O. Rabin (|53]), who proved that the
monadic theory S2S of the binary tree with two successors is decidable, reducing
the question of satisfiability of a given formula ¢ to the question whether there
exists an accepting run of the automaton A, on infinite trees. Decidability of
this stronger theory allows an automatic verification of a broader spectrum of
programs, than in the case of the theory S1S.

Despite the fact, that Rabin’s argument is similar to the one used by Biichi,
details are different, including a use of transfinite induction in the proof of the
correctness of Rabin’s algorithm. Y. Gurevich and L. Harrington ([24]) proved,
that one can replace the transfinite induction with a finite-memory determinacy
of a certain game on a countable board, where the winning condition is expressed
as a Borel set of low complexity.
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Figure 2: A parity game with 8 states; Eve decides about the moves from states
marked with circles, Adam decides about the moves marked with squares. A
positional winning strategy of Eve is marked with edges labeled “STR”. From the
green states Eve has a winning strategy, from other states Adam has a winning
strategy.

More precisely, in the proof of Rabin’s theorem one can apply a parity gameﬂ
where the set of states V is divided into states V3 belonging to Eve and states Vy
belonging to Adam. To every state q € V there is assigned a rank rank(q) € w.
Possible moves from a given state are marked by edges between vertices V. Eve
wins an infinite game qo, q1, ... if

lim sup rank(qn)
necw

is an even number. Figure |2| shows an example of such a game.

Nondeterministic automata on trees, making appearance in the proof of Ra-
bin’s theorem, have similar structure to the automata on infinite words, however
the transitions of the automaton take into consideration two successors of a given
state, hence the set of all transitions A 4 is a subset of theset Q4 x A x Q4 X Q4.
Instead of defining a set of accepting states, the automaton is equipped with a
function rank : Q4 — w. A tree t, understood as a mapping t : 2* — A, is
accepted by the automaton A, if there exist an accepting run p of the automaton
A on the tree t, that is a mapping p : 2* — A4 such, that

1. labels of the tree t agrees with the transitions indicated by the run p,

2. for every infinite path 7 in 2*, if qo,q1,... are the states reached on the
path 7t during execution of the run p, then

lim sup rank(qn )
new

is an even number.

8Gurevich and Harrington in [24] used more complicated games, parity games were intro-
duced later in [19].
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Figure 3: Mostowski—Rabin index hierarchy. For a given index (i,k), the dual
index means the index above/below (i,k), for example (1,3) and (2,0) are dual.
The classes A2 are intersections of dual classes and the classes Comp, consists
of languages obtained through composition of automata of lower index for k > 0
and all weak alternating languages for k = 0.

An alternating automaton A on trees is even more closely related to the parity
games. The set of states Q 4 is divided into states belonging to Eve (Q7) and the
states belonging to Adam (QY‘\). Transitions Ag € Q4 x Qa x {AUE€}) x{0,1}
one can identify with the edges of a directed graph with vertices Q 4 and edges
labeled by the set (A U{e}) x {0, 1}, interpreted as letters from the set A U {e},
along with the direction left or right in the tree. The automaton A is equipped
with a mapping rank : Q4 — w. One can play infinite parity game on the tree t
starting from the initial state qo. We say that t is accepted by A4, if there exists
a winning strategy for Eve on the tree t.

We say that a language L is of index (i,k) for i = 0,1 and k € w (i < k),
if there exists .4 an alternating automaton on infinite trees accepting language L
and such that the mapping rank takes values in the closed interval [i,k] C w (see
Figure [3)).

J. Bradfield (|12]) proved that the hierarchy is strict, that is for every i =0, 1,
k € w, 1 < k there exists a language L of index (1,k), which is not of the dual
index.

A difficult step in the proof of Rabin’s theorem consists in proving, that the
complement of a language accepted by a nondeterministic automaton on trees is
accepted by another nondeterministic automaton on trees. On the other hand,
alternating automata are clearly closed with respect to the complementation,
because it is enough to exchange the role of the players and move the values
of the mapping rank by 1 (that is, the complementation can be expressed as the
switching to the dual class). So, one can think about the proof of Rabin’s theorem
as a transformation of an alternating automaton on trees into a nondeterministic
automaton on trees. In particular, E. A. Emerson and C. S. Jutla expressed (|19],
see also [48|) Rabin’s theorem as equality between the classes of languages defined
by nondeterministic and alternating automata on trees.

The theory of automata on infinite trees seems to be substantially more
complicated than the theory of automata on infinite words. One of the reasons
is the fact, that automata on infinite words can be determinized ([41]) and this
is false for automata on trees. In the case of automata on infinite tress, the
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Figure 5: Projective hierarchy.

languages accepted by deterministic automata are significantly simpler, than the
languages accepted by nondeterministic automata.

In terms of Mostowski—Rabin index hierarchy, the deterministic automata
are of index (0,1). On the other hand, a characteristic feature of this class
of automata is expressible in terms of descriptive set theory. The descriptive
set theory allows to classify sets according to their topological complexity. The
set A2" of all infinite trees over the alphabet A, is equipped with the product
topology. Taking into account that the set A is finite, the resulting topology is
compact. The simplest set in the descriptive hierarchy are clopen sets (A?). To
the family A9 belong in particular sets

Uy o ={teA? :tlv)=a}

for v € 2* and a € A and other elements of A9 are Boolean combinations of the
above sets. Countable unions and intersections produce next levels of the Borel
hierarchy, that is the open sets (£9), closed sets (T19), Fo (£9), G5 (T19) and so
on.

Borel sets are denoted A} and their continuous images are called analytic sets
(£1). The complements of analytic sets are called coanalytic sets (TT]). Con-
tinuous images of coanalytic sets are Z} sets and their complements are ﬂ} sets.
The languages accepted by deterministic automata on infinite trees are coanalytic
and the languages accepted by nondeterministic automata on infinite trees reach
much further in the projective hierarchy (see Figure . From Rabin’s theorem
one can deduce, that the languages accepted by nondeterministic automata on
infinite trees belong to the class A}, that is they are simultaneously in the classes
£} and TT).

Detailed analysis of descriptive complexity of these languages is given in the
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paper — this is a corollary of our studies of the probabilistic p-calculus. In the
paper we prove, that the languages accepted by nondeterministic automata
on infinite trees are included in the first w levels of Kolmogorov’s hierarchy of
R-sets and one can find regular languages of infinite trees complete for each of
the first w levels of this hierarchy.

Experience with automata on words suggests, that each algorithmic prob-
lem related to nondeterministic or alternating automata should be possible to
settle analyzing the structure of transitions of a given automaton. It appears
however, that many natural problems are combinatorially quite complicated and
currently beyond the reach of known algorithms. In particular, so far there are
no algorithms solving the following decision problems

e given a nondeterministic automaton on infinite trees, decide whether the
language defined by this automaton is Borel,

e for a given index (i,k) and a nondeterministic automaton on infinite trees,
decide whether the language defined by the automaton belongs to the (i, k)—
th level of the Mostowski-Rabin index hierarchy.

Despite significant efforts (see in particular |21} |49} [51} |64]), without a big exag-
geration one can say that essentially no nontrivial question regarding nondeter-
ministic automata and the Mostowski—-Rabin index hierarchy, Borel hierarchy or
projective hierarchy, has an algorithmic solution. One exception is an algebraic
characterization of the family of Boolean combinations of open sets ([9]), with a
slight modification proposed by A. Facchini and myself in [20|, where we give an
algorithmic criterion for the membership in the family Ag. Regarding the index
hierarchy, there are only partial results about the membership in the levels (0, 1)
and (1,2) (|17]).

In the series of papers Investigations of automata and related logics
using methods of set theory, the methods borrowed from the foundations of
mathematics I consider to be a substitute of a proper algorithmic solution.

As shown in the papers included in the series, in some instances we obtain
an interesting information about a hierarchy without a complete understanding
of the combinatorial structure of the automata inducing the hierarchy. In partic-
ular, we can prove some theorems about separation property of regular languages
(see Figure @ More precisely, in some concrete cases we can answer whether
languages A, B can be separated by a set belonging to a given simpler family
of languages. The separation property is related to the problem of deciding the
membership in a given level of a hierarchy. Suppose, that we have an algorithm
which for given languages A, B can answer a question whether there exists a set
from a family C separating A and B. This algorithm can be applied to A and its
complement. The answer would be positive if and only if the set itself would be
a member of C. In the case of the Mostowski—-Rabin index hierarchy, the separa-
tion property can be investigated with respect to the family Comp, and a bigger
family Ailt for k € w. Providing an algorithm deciding the separation property
of Comp, or A2 (k € w) seems to be out of reach of the currently available
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Figure 6: Set A can be separated from B by a simpler set C.

methods in automata theory. We approximate a hypothetical algorithm for the
separation property with respect to the family Ai“ by proving, that for every
disjoint pair of languages of index (1,2) the answer would be “YES” (for k = 1)
and providing, for every k € w, combinatorially non-trivial examples of disjoint
pairs, such that the answers would be “NO”.

The separation property is well understood with respect to the Borel hierarchy
(|31, Theorem 22.16]). The separation property of analytic sets was proved by
N. Lusin ([31, Theorem 14.7]): two disjoint analytic sets can be separated by
a Borel set. Papers ,(]ED, are attempting to translate these results from
descriptive set theory to the realm of the Mostowski-Rabin index hierarchy (see
a detailed description below).

I claim that set-theoretical methods play roles of heuristics in this series
of papersﬂ A set-theoretical heuristic helps to get an intuition how to deal
with a given problem and very likely it may no longer be needed, once a full
understanding of the problem is reached. In the following three Sections I describe

the paper (A]), next the paper and finally the three papers (C]),(D) and (E).
Set-theoretical heuristics play roles in all of these research directions.

Description of the paper (A]). This is a part of a broader program of extend-
ing expressive power of MSO logic by additional quantifiers, which allow for a

4Regarding axioms considered new at that time, such as Continuum Hypothesis, K. Godel
writes in page 261] about verifiable consequences as a criterion of a success of a given
axiom. By wverifiable consequences Godel means theorems proved with some help of a given
axiom, which can be proved without use of the axiom, at the expense of a more complicated
proof. J. P. Burgess in described this kind of success as a heuristic intuition in favor
of an axiom and recalls the most famous example of such a success, namely Martin’s Borel
determinacy theorem, proved earlier with a help of a large cardinal assumption.
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restricted counting. One choice for such an extension is the quantifier U added
to theories S1S or S2S

U~(P(X) = Vnew EIX,IX\>n (p(X).

A series of papers is dedicated to this topic: in |6] a plan of investigations of
the quantifier U was formulated, connections with automata with counters were
shown in [8], various fragments of logic MSO+U on words and trees were proved
to be decidable |7} |10] and moreover in the paper |18] authors showed a reduction
of decidability of the nondeterministic index problem do the decidability of S2S
extended by the quantifier U[ﬂ

In the paper we prove that the monadic theory of the binary tree with
two successors and the quantifier U is undecidable. This result was proved using
an additional set—theoretic assumption V=L (|30, Chapter 13]).

Paper is based on a method developed by Shelah in [61]. Shelah proved
that the monadic theory of the reals is undecidable. Apart of the above mentioned
new result about the quantifier U, we included a slight modification of Shelah’s
argument. Our proof is based on a reduction of the fragment V*3* of the first
order theory of undirected graphs without equality to the monadic theory of the
reals. This fragment of the theory of graphs can be quite conveniently expressed
using the tools provided by Shelakﬁ The fragment V*3* of the first order theory
of undirected graphs without equality is undecidable as shown by Y. Gurevich in
|23, Theorem 1, Section 9], comp. |11, Chapter 3.2].

Shelah’s theorem was proved in [61] under an additional assumption of the
Continuum Hypothesis and the argument is based on the transfinite induction.
In the paper of Y. Gurevich and S. Shelah |25] the transfinite induction from [61]
was refined to the point, where the assumption of the Continuum Hypothesis was
no longer required, at the cost of a more complicated combinatorial argument.
The Continuum Hypothesis played a role of a heuristic, which at the initial stage
allowed some combinatorial simplifications and finally was completely removed.

In we use a stronger heuristic, than one used in [61]. Namely, the axiom
V=L implies Continuum Hypothesis and allows to define a well-ordering of the
reals, which belongs to the family A}. This implies, that many subsets of the
reals build through transfinite induction can be represented as projective sets.
In particular, under the assumption V=L one can prove that among A} sets are
Lebesgue non—measurable sets (this result was proved by K. Gédel, modern proof
can be found in [30, Corollary 25.28]).

Papers [28] and [29] showed, that in the logic MSO+U on infinite words,
for every n = 1,2,..., one can define a set at the n-th level of the projective
hierarchy and complete for all projective sets from this level with respect to
continuous reductions.

We prove, that continuous reductions can be expressed through quantification
over sets of nodes of an infinite tree (Lemma 2.5 in ), and then we rewrite the

5This is a corollary from 18] noticed by M. Bojanczyk.
6Proof in the paper |61] is based on the reduction of the first order theory of the natural
numbers with addition and multiplication.
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important sentences expressed in the monadic theory of the reals in terms of the
monadic theory of the binary tree with two successors and the quantifier U. This
implies undecidability of the later theory.

Description of the paper . The p-calculus is a logic which, under ap-
propriate interpretation (|19} [50]), is equivalent in terms of expressive power to
alternating automata on infinite trees.

The p-calculus along with weaker logics LTL and CTL, can express certain
decidable properties of labeled transition systems. From the point of view of
mathematical modeling, these are the properties expressible in terms of parity
games. For example, given three types of states Vp, Vi, V2 in the p-calculus we
may require, that after every visit in a state from Vj, a state from V; will be also
visited and finally, a state from V, will be reached.

The probabilistic p-calculus allows formulation of similar properties of a given
model, for example: probability of reaching a state from V; after a visit in a state
from V, is greater or equal than %, probability of reaching a state from V> and
later remaining in states from V, is smaller or equal than 1;. Informally, one
can say that probability plays a role of a new quantifier in a similar way as the
quantifier U in the context of the MSO logic.

The logic PCTL is used in practice, but its theoretical properties are not yet
completely understood, in particular the satisfiability problem for this logic is
not settled ([13]). One of the motivations to study the probabilistic p-calculus
is to provide a more abstract framework, better suited for mathematical analysis
of problems such as satisfiability of the PCTL logic. In general, a witness of
satisfiability in the p-calculus is an infinite tree (unfolding of a finite graph to a
tree, according to the relations of the model) and in the probabilistic p-calculus
this is a set of trees; in the later case we are interested in the measure of this
set. The probabilistic p-calculus proposed by M. Mio allows an interpretation of
the simple and practical logic PCTL and at the same time it has an expressive
power analogous to the ordinary p-calculus (|45l 46]). The correctness of Mio’s
approach is based on two premises:

1. regular languages of trees are universally measurable, that is mea-
surable with respect to every Borel measure and moreover

2. every Borel measure is continuous in appropriate sense on every
regular language of trees.

This is not a particularity of Mio’s approach: measurability is a standard problem
in modeling with the logic PCTL (|5, Lemma 10.39]), however so far the problem
did not imply serious difficulties, because in measure-theoretic analysis of the
logic PCTL make appearance only Borel sets, which are obviously universally
measurable.

Both problems were partially solved by Mio with help of a set-theoretical
heuristic guaranteeing that sufficiently simple sets in the projective hierarchy
have the above two properties. The role of the heuristic was played by the
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Figure 7: The hierarchy of R—sets is obtained through iteration of the trans-
formation co-R starting from the operation |Jo[); the transformation co- is
a set—theoretical equivalent of the dualization of parity games, that is the
roles of players are exchanged and the index is moved by 1. The operation
R(UoN) = R(co-R)°(Jo) is the Suslin operation and generates the family
of analytic sets, co-R(|Jo () generates coanalytic sets, AT consists of Borel sets
and (co-R)?(|Jo () generates ¥ ]-inductive sets, treated in more details in the

paper @])

Martin Axiom ([30, Chapter 16]). In the paper we show that no heuristic is
required in order to prove the universal measurability, since the regular languages
of infinite trees are located on the first w levels of the Kolmogorov hierarchy
of R—sets. Our result is more precise: among the regular languages there are
complete languages for the first w levels of the hierarchy of R-sets. According to
our knowledge, these are in fact the first natural examples of R-sets above the
second level of this hierarchy. This extends an earlier result of J. Saint Raymond
([58]). In turn, the results of [58] were earlier applied in the paper (D). The
second of the above problems posed by Mio is settled in using a weaker
heuristic than the Martin Axiom, however already after the paper was submitted
for the publication, we discovered that a method developed by N. Lusin and
W. Sierpiniski in [39] shows that the continuity can be proved without any set—
theoretical assumptions.

The original idea of Kolmogorov |35, Addendum 2] was to create a large
o—field consisting of universally measurable sets. The definition proposed by
Kolmogorov is an extension of a definition of an analytic set. Kolmogorov’s
idea can be considered quite revolutionary even from the modern perspective.
Namely, Kolmogorov creates inductively more and more complicated operations
on sets. The first of the operations is (ol J, after the first transformation we
obtain the Souslin operation which is in correspondence with the index (1,2)
of the Mostowski—-Rabin hierarchy. The next transformation creates from the
Souslin operation an operation corresponding to the index (0,2) and so on (see
Figure [7)).

The relation between R-sets and Gale—Stewart games was for the first time
noticed by J. P. Burgess in [15|. From this interesting theorem one can relatively
straightforwardly deduce an answer to the first question posed by Mio, that is to
the question about universal measurability. We decided to partially reconstruct
Burgess’ reasoning, what seems to be inevitable if one plans to prove more precise
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results about location of regular languages within the hierarchy of R-sets.

As the whole theory of R-sets, Burgess’ method as described in [15] is ham-
pered by notational problems and constant attempts to encode with natural num-
bers a certain data structure, which does not lend itself to such an encoding. In
practice it makes proofs hard to write or read and in particular the game-theoretic
characterization proved by Burgess is only written for one specific level of the R-
hierarchy. One of the decisions made in the paper is to preserve the natural
data structure related to the transformation R. The operations J and () are
defined for countable sequences (A, : n € w). The operation o[ is defined for
sequences index (A, m : M, m € w) index by two variables n,m € w. If a given
operation ¢ as a domain has a sequence (A, : w € A) indexed by a certain set A,
then after transformation, the operation R(¢) is defined over (A, : w € A*). For
example, if @ operated on sequences indexed by natural numbers, then R(¢) will
be defined on families of sets indexed by finite sequences of natural numbers. Two
applications of transformation R will create an operation with a domain indexed
by (w*)* and so on. This is a familiar date structure called a nested list. In the
paper we prove that there exists a natural correspondence between transforma-
tion R and generalized parity games, called in the paper the matryoshka games.
The matryoshka games substitute the Gale—Stewart games used by Burgess. The
natural analogy with the parity games results from correspondence between ap-
plications of the transformation R and increases of the index in parity games.
The name matryoshka games is motivated by a three steps construction shown

at Figures [8] [9) and

—— (3) 0) gO
OJ’ \]\. )
(v,0 v,0) (v,0) (v,0)

) (
V<
Figure 8: Game G, consists of two rounds, a round of player 3 and a round of
player V; this is a game-theoretic counterpart of the operation Jo ).

¥ Y Y

_ _ g
(Pi) = (Pyi+1)
Il Il ] Il
LN N N A

Figure 9: Transformation co- applied to a game G.

The three transformations allow building more and more complicated ma-
tryoshka games, which correspond to higher and higher levels in the Mostowski-
Rabin hierarchy. Sets

Wi ={t:2" = {3,v} x{i,...,k}: player 3 has a winning strategy on t}
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Figure 10: Transformation R applied to a game G. The given game G is played
as one of the stages of a larger game RG.

are complete for the k—th level of the Kolmogorov hierarchy and the result is ob-
tained through a characterization of transformation co-R in terms of matryoshka
games.

The “low-level” set-theoretical definition of R-sets has an advantage, that one
can easily check basic properties, such as universal measurability. To be more
precise, as Kolmogorov noticed in his notes [35, Addendum 2], without special
difficulties one can apply the proofs known before for analytic setﬂ On the other
hand, the “high-level” characterization in terms of games allows for applications
of R-sets in the context of nondeterministic automata on infinite trees and the
probabilistic p-calculus.

Description of the papers (C)),(D),(E). In an ideal scenario, for a given k
we would like to have an algorithm, such that for given languages L1, L, defined
by automata on infinite trees, we would get an answer whether L;,L, can be
separated by a set from Ailt. At the moment this kind of algorithm is beyond
reach, since we know too little about the combinatorial structure of the automata.
Instead of solving this difficult algorithmic problem, in the above three papers
we consider a somewhat simpler task of identifying levels of Mostowski-Rabin
hierarchy, such that the separation property holds with respect to the family Ailt
(comp. Figure [3).

In descriptive set theory, one can say, that the separation property is com-
pletely understood for the Borel hierarchy and for analytic sets. In the case of
automata the understanding is only partial. Historically the first observation can
be deduced from a proof of Rabin [54]: two disjoint languages of index (1,2) can
be separated be a weak language, that is a language accepted by an alternating
automaton such that the accepting condition is not expressed as lim sup but as
maximum. An alternating automaton of index (1,2) can be simulated by a non-
deterministic automaton of index (1,2)@ and in fact the proof, that two disjoint
languages of index (1,2) can be separated by a weak language, can be deduced
from this observation.

7This rule does not apply to more subtle properties of analytic sets, such as the boundedness
principle [30, Corollary 25.15].

8This is the only level of the Mostowski—Rabin index hierarchy where such a simulation is
possible without increasing of the index.
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A. Arnold and L. Santocanale proved in |4] that for even k, k > 0, a given
two disjoint languages L1, L, accepted by a nondeterministic automaton of index
(i,k), can be separated by a language from the family Comp, _;. At the same
time, it was proved in [4], that for k > 0 there exist languages in AiIL which
do not belong to Comp, . In particular, every such language K has the property,
that K and its compliment K have index (0,k + 1) and cannot be separated by
a set from Comp,. These results of Rabin and Arnold-Santocanale suggest
a conjecture, that for even k the separation property holds for the languages
of index (i,k). Taking into account that in a typical hierarchy in descriptive
set theory (comp. |31, Proposition 22.15]) the separation property cannot hold
simultaneously for a given class and for the dual class, the above conjecture
naturally extends to a full conjecture, that the separation property holds for
index (1, k) if and only if k is even.

In the paper we proved that there exists languages Lo 1, L(’)‘1 of index
(0,1) which cannot be separated by a Borel set, hence clearly they cannot be
separated by a set from A3'*. This result is related to my earlier research in [36],
where we also dealt with coanalytic sets inseparable by Borel sets. The proof in
the paper is based on the reduction of all disjoint pairs of Borel languages to
the pair (Lo,1,Lg ;). The existence of such a reduction shows that Lo,; and Lg ;
cannot be separated by a Borel set and consequently by a set from A?lt.

In the paper @D, similarly as in the paper , we are interested in the topo-
logical complexity of the sets W i, but the method used in was substantially
extended thanks to results from the paper of J. Saint Raymond (|58|) regarding
Z}—inductive sets. We proved, that W73 is a Z}—inductive set and complete for
this class of sets. This result is interesting for the following reasons.

e For the first time in the literature we precisely located the descriptive com-
plexity of the set W4 3 and all other languages of index (1,3). From the
perspective of descriptive set theory, the class of Z} —inductive sets is under-
stood only partially. There are known characterizations in terms of games,
but on other hand the first natural example of a complete set was pre-
sented only few years ago in the paper [58] (J. Saint Raymond points to the
discovery of this example as the main motivation behind the paper [58]).

e The result of the paper @]) helped to preliminary veryify the inseparabil-
ity of the pair (L1’3,L{‘3)E] constructed in the paper 1) hence the set—
theoretical methods played here a role of a heuristic. In the final version
of the paper we managed to completely eliminate this heuristic in favor of
a simpler fixed-point method, used in the context of W; i languages in the
papers |1}, [3]. A similar proof technic as in the paper @]) was later applied
in a more refined version in the paper in order to prove, that languages
Wi, i are complete for the appropriate levels of the R-hierarchy.

In the paper we gave new examples of inseparable pairs for index (i, k), k
odd. In the journal version we additionally showed, using the fixed-point method,

9We proved that the pair (Ly,3,L 3) is complete with respect to all disjoint pairs of Z}—
inductive sets and in this context completeness implies inseparability.
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that the separation property does not hold for the weak index hierarchy for levels
(1,%) (k € w,k > 1) and moreover, that the reduction property (|31, Definition
22.14)) fails for all levels of the index hierarchy. In the context of the descriptive
set theory, the properties of reduction and separation are dual, as illustrated by
the following examples:

1. Fs sets have the reduction property, but do not have the separation prop-
erty, their complements, that is G sets, have the separation property, but
do not have the reduction property.

2. analytic sets have the separation property, but do not have the reduction
property, their complements, that is the coanalytic sets, have the reduction
property but do not have the separation property.

In the Mostowski—-Rabin index hierarchy this rule fails and as a result, one cannot
reason as it is common in descriptive set theory (|31, Proposition 22.15(i)]), where
the reduction property implies the separation property for the dual class. It seems
that the separation property can be related to the product operation, which is
defined for nondeterministic automata, but an analogous construction for the
alternating automata is not known. For the meantime, the separation problem
for the indices (i,k), k even, k > 0, remains open in all cases, except for the
index (1,2). Also the separation problem is open for the weak hierarchy for all
indices (0, k), except for the index (0,1). In particular, it is unknown, whether
two disjoint languages accepted by automata of index (0, 2) can be separated by a
language, which is simultaneously of index (0,2) and (1,3). All weak alternating
languages of index (0,2) are Gs sets. Taking into account, that the separation
property for Gs sets ([31, Theorem 22.16]) is essentially a triviality, it seems that
the difficulty in establishing the separation property of the alternating hierarchy is
probably not related to the topology or set theory, but rather to yet not discovered
combinatorial or algebraic properties of automata on trees.

Papers not included in the series Investigations of automata and re-
lated logics using methods of set theory.

Algebraic characterization of A9 sets. In the paper [20] we show that a minor
modification of a technic developed in the paper [9] allows for characterization of
A9 sets in algebraic terms. The result of Bojariczyk and Place ([9]) concerns the
Boolean combinations of open sets.

A paper related to the cardinal arithmetic and measure theory (|33]).
Cardinal arithmetic has been an area of a systematic research from the inception
of set theory and currently most questions are already answered. However, there
is one important exception to this rule. The behavior of the mapping k — 2
for cardinal k of countable cofinality is still an open problem. This seemingly
esoteric looking topic was developed by S. Shelah to the pcf E theory (|60, [59]).
The pcf theory provides arguments, why cardinals such as N, i N1, looking

10pcf abbreviates possible cofinalities.

16



from an appropriate perspective, can be considered much smaller than 2¥¢. One
of the applications of the pcf theory is a proof, that there exists a scale of length

N,+1 in the product
I3

neB

where B C w is a specially chosen infinite subset of w and the scale is a cofinal
subset in the sense of the coordinatewise ordering modulo finite sets. The scale
preserves many properties of the full product and at the same time is much
smaller, because the whole product is of the size at least 2%° and the scale
has the size N, 1. In particular, the existence of a scale allows to reduce to
the size N, 1 an important topological example of a normal space, such that
X x [0,1] is not normal (the example was constructed by M. E. Rudin [56|, see
also [34]). This example plays a certain role in abstract measure theory. Namely,
J. Matik ([|40]) proved, that if X x [0,1] is normal, then every Baire measure
on X can be extended to a Borel measure on X. The o-field of Borel sets is
generated by all closed subsets of X and the o—field of Baire sets is generated
only by functionally closed sets, that is by preimages of points under continuous
functions f: X — [0, 1].

In [33] we prove, that every topological space similar to one constructed in
[34], has good measure-theoretic properties, that is every Baire measures can be
extended to a Borel measure. The original, not downsized example of Rudin, also
has good measure-theoretic properties, but we prove it only under a quite strong
set-theoretical assumption. This line of research was motivated by a question of
D. H. Fremlin on the limits of applicability of Matik’s theorem.

Four papers related to the descriptive set theory.

1. Hurewicz’s theorem (|31, Theorem 21.18]) says that if an analytic set A in a
Cantor set C is not an F, set, then one can find a standard witness for this fact,
namely a copy of the Cantor set D C C such, that D N A is homeomorphic with
the irrationals in the real line and D \ A is homeomorphic with the rationals in
the real line. Among further improvements of the theorem of Hurewicz, one of
the most interesting is a result of Kechris, Louveau and Woodin (|31, Theorem
21.22]). In the paper [44] we show a topological version of the later result.

2. In the paper [43] I proved, using a method of J. Steel developed by F. van
Engelen, that the space K(Q) of all compact subsets of the rationals with the
Hausdorff metric is a homogeneous space, that is for every two points there exists
a homeomorphism which swaps them.

3. In the paper [42] I proved, that the space C,, (), that is the space of all real-
valued continuous functions on the irrationals with the topology of pointwise
convergence, can be mapped in a continuous and bijective way on the Hilbert
cube [0,1]“. In the construction the key observation is the fact, that C,(N)
can be canonically mapped onto a coanalytic-complete set. The result answers
questions of A. V. Archangielski and J. P. Christensen.

4. M. Morayne and C. Ryll-Nardzewski in the paper [47] asked a question about
the characterization of functions f : R — R equivalent to Borel-measurable func-
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tions. In the paper [36] we give such a characterization based on an interesting
result of J. Saint Raymond from [57]. Namely, Saint Raymond proved that the
pair (WF, UB) is complete with respect to all disjoint pairs of coanalytic sets. The
problem of completeness of a given pair of sets also appears in the paper @

Two papers from the general topology (three other papers from this
area are skipped to save the space).

1. The paper [37] is about the o—compactness and similar notions in the realm
of topological groups. In the paper [37] we give an example which differenti-
ates between two such notions. This answers questions of M. Tkachenko and
C. Hernandez.

2. The paper [38] is about the Valdivia compact spaces. This is a generalization
of Eberlein and Corson compacta, which are related to the weak topologies in
the Banach spaces. In [38| we investigate the Valdivia compacta in the context
of inverse limits of compact metric spaces and show as a corollary a preservation
result about retractions and open mappings.
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