New possibilities of codings – information theory in practice

3 new families of codings:

1) **Asymmetric Numeral Systems** – widely used new entropy coding
 - **Huffman** coding: fast, but suboptimal (compression ratio)
 - **Arithmetic** coding: slow, nearly optimal (→ Shannon entropy)
 - **ANS**: fast and nearly optimal (build automaton)

Asymmetric knowledge of sender-receiver:

2) **Generalizations of Kuznetsov-Tsybakov problem**
 - e.g. for more subtle steganography/watermarking, like image-like QR codes

3) **Joint Reconstruction Codes** – enhancement of Fountain codes
 - When sender doesn’t know noise levels (receiver does), e.g. data storage

Jarosław Duda, Warszawa, 6.II.2016
1. **Entropy coding** – the heart of data compressors

(prefix,) **Huffman coding** (also unary, Golomb, Elias, etc.)

- **fast** (>300MB/s/core)
- no multiplication, needs sorting
- but **inaccurate**: \(\Pr(s) \sim 2^{-r} \)
- e.g. for \(\Pr(a)=0.01, \Pr(b)=0.99 \)
- uses **1 bit/symbol**

Past: compromise

Arithmetic/range coding

- **slow** (<< 100MB/s/core)
- uses multiplication
- uses nearly **accurate** \(\Pr(s) \)
- e.g. for \(\Pr(a)=0.01, \Pr(b)=0.99 \)
- uses \(~0.08\) bits/symbol

Or?

Asymmetric Numeral Systems (ANS)

- **fast** (>500MB/s/core)
- no multiplication, no sorting
- uses nearly **accurate** \(\Pr(s) \)
- e.g. for \(\Pr(a)=0.01, \Pr(b)=0.99 \)
- uses \(~0.08\) bits/symbol

Now: ANS

Also allows for simultaneous encryption

Some ANS decoding:

- \(X \rightarrow s, \text{ new } X \)
- \(0 \rightarrow a, 2 + d_1 \)
- \(1 \rightarrow b, 0 + 2d_2 + d_1 \)
- \(2 \rightarrow a, 0 \)
- \(3 \rightarrow a, 1 \)

\(newX, nbBits, decodingTable \)
Huffman vs ANS in compressors (LZ + entropy coder):

from Matt Mahoney benchmarks http://mattmahoney.net/dc/text.html

<table>
<thead>
<tr>
<th>Compressor</th>
<th>LZA 0.82b –mx9 –b7 –h7</th>
<th>lzturbo 1.2 –39 –b24</th>
<th>WinRAR 5.00 –ma5 –m5</th>
<th>WinRAR 5.00 –ma5 –m2</th>
<th>lzturbo 1.2 –32</th>
<th>zhuff 0.97 –c2</th>
<th>gzip 1.3.5 –9</th>
<th>pkzip 2.0.4 –ex</th>
<th>ZSTD 0.0.1</th>
<th>WinRAR 5.00 –ma5 –m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enwiki8 100,000,000B</td>
<td>26,396,613</td>
<td>26,915,461</td>
<td>27,835,431</td>
<td>29,758,785</td>
<td>30,979,376</td>
<td>34,907,478</td>
<td>36,445,248</td>
<td>36,556,552</td>
<td>40,024,854</td>
<td>40,565,268</td>
</tr>
<tr>
<td>encode time [ns/byte]</td>
<td>449</td>
<td>582</td>
<td>1004</td>
<td>228</td>
<td>19</td>
<td>24</td>
<td>101</td>
<td>171</td>
<td>7.7</td>
<td>54</td>
</tr>
<tr>
<td>decode time [ns/byte]</td>
<td>9.7</td>
<td>2.8</td>
<td>31</td>
<td>30</td>
<td>2.7</td>
<td>3.5</td>
<td>17</td>
<td>50</td>
<td>3.8</td>
<td>31</td>
</tr>
</tbody>
</table>

zhuff, ZSTD (Yann Collet): LZ4 + tANS (switched from Huffman)

lzturbo (Hamid Bouzidi): LZ + tANS (switched from Huffman)

LZA (Nania Francesco): LZ + rANS (switched from range coding)

e.g. lzturbo vs gzip: **better compression, 5x faster encoding, 6x faster decoding**

saving time and energy in extremely frequent task
Apple LZFSE = Lempel-Ziv + Finite State Entropy
Default in iOS9 and OS X 10.11
“matching the compression ratio of ZLIB level 5, but with much higher energy efficiency and speed (between 2x and 3x) for both encode and decode operation”

Finite State Entropy is Yann Collet’s (known from e.g. LZ4) implementation of **tANS**

Default **DNA compression**: **CRAM 3.0** of European Bioinformatics Institute

<table>
<thead>
<tr>
<th>Format</th>
<th>Size</th>
<th>Encoding(s)</th>
<th>Decoding(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAM</td>
<td>5 579 036 306</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>CRAM v2 (LZ77+Huff)</td>
<td>1 053 744 556</td>
<td>183</td>
<td>27</td>
</tr>
<tr>
<td>CRAM v3 (order 1 rANS)</td>
<td>869 500 447</td>
<td>75</td>
<td>31</td>
</tr>
</tbody>
</table>
2. Generalizations of Kuznetsov-Tsybakov problem (KT)

Imagine we can send \(n \) bits, but \(k = p_f n \) of them are damaged (fixed)

For example QR-like codes with fixed some fraction of pixels (e.g. as contour of a plane):

\[
\begin{align*}
160 \times 160 & \quad p_f = 0.139 \\
80 \times 80 & \quad p_f = 0.157 \\
40 \times 40 & \quad p_f = 0.189
\end{align*}
\]

If the **receiver would know positions** of these strong constraints, we could just use the remaining \(n - k = (1 - p_f)n \) bits

Kuznetsov-Tsybakov problem: what if **only the sender knows the constraints**?

Surprisingly, we can still **approach** the same capacity.

But at a cost of searching for satisfying a code (paid only by the sender!)
KT: strong constraints – enforce values, **weak – enforce densities**

Homogeneous contrast case: use \((c, 1 - c)\) or \((1 - c, c)\) probability dist.

<table>
<thead>
<tr>
<th>Rate: 7/8</th>
<th>Rate: 3/4</th>
<th>Rate: 1/2</th>
<th>Rate: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast: 0.7051</td>
<td>Contrast: 0.7855</td>
<td>Contrast: 0.8900</td>
<td>Contrast: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>40 x 40 (1600b)</th>
<th>160 x 160 (25600b)</th>
<th>80 x 80 (6400b)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General constraints: grayness of a pixel in picture is probability of using ‘1’ in code
Constrained Coding: find the closest $Y = T(payload_bits, freedom_bits)$, send Y

Rate Distortion: find the closest $T(0, freedom_bits)$, send $freedom_bits$

Because T is bijection, for the same constraints/message to fulfill/resemble,

\[
density\ of\ freedom\ bits + density\ of\ payload\ bits = 1
\]

rate of RD + rate of CC = 1

we can translate previous calculations by just using $1 - \text{rate}$

B&W picture: 1 bit per pixel = visual aspect (RD) + hidden message (CC)

<table>
<thead>
<tr>
<th>K-T, $p_f = 0.157$</th>
<th>HC, contrast = 0.7855</th>
<th>general, average $h(g) \sim 0.82$</th>
</tr>
</thead>
</table>

Constrained Coding - we could **hide within** such halftone picture **at most**:

1 - 0.157 = 0.843 bits/pixel \quad h(0.7855) \sim 0.75 bits/pixel \quad 0.82 bits/pixel

Rate Distortion - we could **store/compress** such picture alone using **at least**:

0.157 bits/pixel \quad 0.25 bits/pixel \quad 0.18 bits/pixel
3. Joint Reconstruction Codes (JRC)

Fountain codes: multiple universal packets, any large enough subset of undamaged ones is sufficient … what about *noise*: damaged packets?

JRC: the *sender doesn’t need to know (final) noise levels* (receiver does)

The decoder adapts to the actual final noise levels as individual trust levels.
Some packets are **lost**, some are **damaged**

Adding redundancy (sender) requires **knowing the damage level**

Not available in many situations (JRC...):

- The final damage of **storage medium** depends on its history,
- **broadcaster** doesn’t know individual damage levels,
- damage of **watermarking** depends on capturing conditions
- damage of packet in **network** depends on its route
- rapidly **varying conditions** can prevent adaptation
JRC, sequential decoding: **undamaged case** for received $N + 1$ packets

Large N: **Gaussian distribution**, on average 1.5 more nodes to test

Damaged case ($N = 3, 2: \epsilon = 0, d: \epsilon = 0.2$): \approx **Pareto distribution**
Sequential decoding: choose and expand most promising candidate (largest weight)

Rate is

\[R_c(\varepsilon) = 1 - h_{1/(1+c)}(\varepsilon) \]

for Pareto coefficient \(c \)

where \(h_u(\varepsilon) = \frac{\varepsilon^u + (1-\varepsilon)^u}{1-u} \)

is Renyi entropy, \(h_1 \) is Shannon entropy

\[\Pr(\# \text{ steps} > s) \propto s^{-c} \]

\[R_0(\varepsilon) = 1 - h(\varepsilon) \]

Shannon bound

\[R_1(\varepsilon) = \lg \left(1 + 2\sqrt{\varepsilon(1-\varepsilon)} \right) \]

“cut-off” bound

\[R_0(\varepsilon) = 1 - h(\varepsilon) \]

Shannon bound

\[R_1(\varepsilon) = \lg \left(1 + 2\sqrt{\varepsilon(1-\varepsilon)} \right) \]

“cut-off” bound
1. **Asymmetric Numeral Systems** – currently replaces Huffman and AC
 Articles, implementations, compressors, benchmarks:

2. **Generalizations of Kuznetsov-Tsybakov problem**
 Image-like QR codes, more subtle steganography/watermarking
 Also: telecommunication settings with dynamically adapting sender

3. **Joint Reconstruction Codes** enhancement of Fountain Codes
 When encoder doesn’t know the final noise levels,
 Like in data storage, broadcasting, networking, watermarking
 Also: data compression with encoder not knowing prior information of decoder