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Abstract. Tree-walking automata are a natural sequential model for recognizing tree languages.
It is well known that every tree language recognized by a tree-walking automaton is regular. We
show that the converse does not hold.
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1. Introduction. A tree-walking automaton is a natural type of finite automa-
ton for trees. At every moment in a run, a tree-walking automaton is located in one
node of the tree. In one step, the automaton moves to a neighboring node and changes
its state according to the transition relation. The step depends on the current state
of the automaton and some local information: the label of the current node, whether
or not it is the root, a leaf, a left child, or a right child. The tree is accepted if one
of the accepting states is reached. For instance, a tree-walking automaton can check
whether all nodes of the tree have the same label by doing a depth-first search.

Even though tree-walking automata were introduced in the early 1970s by Aho
and Ullman [1], not much is known about this model.

This situation is different from the “usual” tree automata—branching tree au-
tomata—which are well-understood objects. In particular, top-down, bottom-up, and
two-way nondeterministic branching tree automata recognize the same class of tree
languages. The tree languages of this class are called regular, the name being so
chosen because the class enjoys many nice properties of regular word languages. A
comprehensive introduction to the standard theory of tree automata can be found
in [4].

As tree-walking automata are a particular case of two-way branching automata,
tree-walking automata recognize regular tree languages. Closure under union and
intersection is also simple. Until recently, however, other fundamental questions per-
taining to tree-walking automata remained unanswered:

1. Is every regular tree language recognized by a tree-walking automaton?
2. Can tree-walking automata be determinized?
3. Are tree-walking automata closed under complementation?

Much research has been dedicated to tree-walking automata. There are nondefin-
ability results for weakened models of tree-walking automata [9, 11, 2], as well as
definability results for strengthened models of tree-walking automata [9, 5, 7]. A
line of research is dedicated to logical characterizations of tree-walking automata [11]
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and their pebble extensions [6]. There has also been some research on tree-walking
automata with an output tape—which define tree-to-word transductions [1]—and on
expressiveness issues concerning this model [8].

Question 2 has been answered negatively in [3]. Question 3 is still open, the
only known result being closure under complementation of deterministic tree-walking
automata [10]. The contribution of this paper is to give a negative answer to the first
question.

2. Preliminaries and the separating tree language. In this section we de-
fine the basic concepts and state our main result.

2.1. Basic definitions. The trees in this paper are finite, binary trees labeled
by a given finite alphabet Σ. A Σ-tree is a partial mapping t : {0, 1}∗ → Σ of finite,
nonempty, and prefix-closed domain dom(t). Elements of this domain are called nodes
of the tree; the label of a node u is the value t(u). Additionally we assume that if v0 is
a node of the tree, then so is v1, and vice versa. Nodes are partially ordered by the
prefix relation; when a node x is the prefix of a node y, we say that x is above y, or
y is below x. The least node ε is called the root, and maximal nodes are called leaves.
The nodes are also ordered lexicographically; we say that x is to the left (resp., right)
of y if x and y are incomparable by the prefix relation, and x is lexicographically
before y (resp., after y). Given a node u, the subtree of t rooted in u—we simply say
the subtree of u when the tree t is clear from the context—is the Σ-tree t′ of domain
{v : uv ∈ dom(t)} defined for all nodes v of t′ by t′(v) = t(uv). The depth of a node u
is |u| + 1, where |u| is the length of u as a word. The depth of a tree is the maximal
depth of its nodes. A balanced tree is one where all leaves are at the same depth.

A set of trees over a given alphabet is called a tree language. A regular tree
language is a tree language recognized by a bottom-up branching tree automaton.
We assume the reader to be familiar with branching automata; see [4] for further
reading. We denote by REG the class of regular tree languages.

We now define (nondeterministic) tree-walking automata. The type of a node
says whether the node is a leaf and whether it is the root. There are four possible
types; we denote the set of types by Types.

Definition 1. A tree-walking automaton is a tuple A = (Q,Σ, I, F, δ), where
Q is a finite set of states; I, F ⊆ Q are, respectively, the sets of initial and accepting
states; and δ is the transition relation of the form

δ ⊆ (Q× Types × Σ × {ε, 0, 1})2.

A configuration is a pair of a state and a node. The automaton can go in one
step from a configuration (q1, v1) to a configuration (q2, v2) if δ contains a transition

(q1, t1, a1, d1, q2, t2, a2, d2)

such that the type and label of vi are ti, ai and there is a node u such that vi = u · di
for i = 1, 2. A run is a nonempty sequence of configurations c1, . . . , cn in which every
two consecutive configurations are consistent with the transition relation. We say
that such a run is from c1 to cn; if both configurations c1 and cn are located at the
same node u, then the run is called a loop in u. A run is accepting if it starts and ends
in the root of the tree, the first state is initial, and the last state is accepting. The
automaton accepts a Σ-tree if it has an accepting run in that tree. The set of Σ-trees
accepted is called the tree language recognized by the automaton. We use TWA to
denote the class of tree languages recognized by some tree-walking automaton.
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The reader may be surprised by our definition of tree-walking automata. In other
texts, the transition relation is of the form

δ ⊆ Q× {root, left child, right child} × {leaf, nonleaf} × Σ ×Q× {↑, 0, 1, ε}.

In this definition—which can easily be shown to be equivalent to the one we use—the
second coordinate extends Types by saying whether a node is a left or right child,
while the {↑, 0, 1, ε} causes the automaton to move to the parent, left child, or right
child of the current node (or not move at all). The point of using our slightly more
verbose definition is that it allows us to easily define “reversed” automata, which visit
the tree in a chronologically (or spatially) opposite manner. We will comment on
these reversed automata in the next section.

We would like to point out here that testing whether a node is a left or right child
is an essential feature of a tree-walking automaton. Indeed, Kamimura and Slutzki
show in [9] that tree-walking automata that do not have access to this information
cannot even test whether all nodes in a tree have the same label.

Symmetry principles. As pointed out before, our definition of tree-walking
automata—in particular in their nondeterministic form—easily adapts itself to sym-
metry arguments, which are very convenient in the proofs. There are two symmetries:
time symmetry and space symmetry. Their formal definition is in terms of transfor-
mations of a tree-walking automaton; namely, each automaton has a time-reversed
and a space-reversed variant. The time-reversed automaton of A, denoted A−T , is
obtained from A by replacing each transition

(q1, t1, a1, d1, q2, t2, a2, d2) ∈ δ

with the transition

(q2, t2, a2, d2, q1, t1, a1, d1).

On the other hand, the space-reversed automaton of A, denoted A−S , is obtained by
replacing each transition

(q1, t1, a1, d1, q2, t2, a2, d2) ∈ δ

with the transition

(q1, t1, a1, s(d1), q2, t2, a2, s(d2)),

where s(ε) = ε, s(0) = 1, and s(1) = 0. One can easily see that

(A−S)−T = (A−T )−S .

We extend the space symmetry s : {ε, 0, 1} → {ε, 0, 1} mapping to nodes (s :
{0, 1}∗ → {0, 1}∗) and trees in the natural manner. The following obvious fact en-
capsulates the properties of the reversed automata.

Fact 2.1. Let (q1, v1), . . . , (qn, vn) be a run of A in a tree t.
• (qn, vn), . . . , (q1, v1) is a run of A−T in t.
• (q1, s(v1)), . . . , (qn, s(vn)) is a run of A−S in s(t).

We say that an automaton is isomorphic to another if there exists a one-to-one
mapping i from the states of the first onto the states of the second such that there
exists a transition

(q1, t1, a1, d1, q2, t2, a2, d2)
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in the first automaton if and only if there exists a transition

(i(q1), t1, a1, d1, i(q2), t2, a2, d2)

in the second automaton. In particular, the isomorphism notion does not involve the
initial or the accepting states of the automata.

We say an automaton is self-symmetric if it is isomorphic to its time-reversed
and also to its space-reversed automaton. By adding (unreachable) states to an au-
tomaton, any tree-walking automaton can be made self-symmetric. In what follows,
self-symmetric automata will be very convenient in reducing the number of cases to
be analyzed. Assume, for instance, that we have proved a statement of the form “for
every two states p, q, any run from p in the root to q in a leaf can be transformed
into one without loops.” If the automaton for which we proved this statement was
self-symmetric, we would also get the following statement for free: “for every two
states p, q, any run from q in a leaf to p in the root can be transformed into one
without loops.” This is because the time-reversal of a run from the root to a leaf is a
run from a leaf to the root, and being loop-free is invariant under time-reversals.

2.2. The separating language. As mentioned in the introduction, it is well
known that all tree languages recognized by tree-walking automata are regular:

(2.1) TWA ⊆ REG.

Whether this inclusion is strict has long been an open question. Engelfriet, Hooge-
boom, and Van Best conjectured that this is indeed the case [7]. The aim of this paper
is to establish this conjecture.

In this section we describe a tree language L that is regular, but not accepted by
any tree-walking automaton, and therefore witnesses the strictness of the inclusion
(2.1).

We consider trees with two possible labels: a and b. Moreover, a is allowed
only in the leaves. We sometimes refer to the symbol b as the blank symbol. Trees
containing only the blank symbol are called blank trees. In a blank tree, only the set
of nodes is important.

Let t be a nonblank tree with a occurring only in the leaves. We will now define
the branching structure bs(t) of t, which is a blank tree (since only the nodes of bs(t),
and not their labels, are relevant). We say a node u is a branching node of t either if
it is an a-labeled leaf of t or if both left and right successors of u have a-labeled leaves
in their subtrees. We define the branching structure of t as the (unique) blank tree
bs(t) such that there is a bijection between the branching nodes of t and the nodes of
bs(t) that preserves the prefix relation and the lexicographic ordering of nodes. The
following drawing illustrates this definition with an example:

a
a a a

Let K be the set of blank trees where all leaves are at even depth. The separating
tree language L mentioned at the beginning of this section is bs−1(K), i.e., the set
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of trees whose branching structures have all leaves at even depth. We now state the
main result of this paper as follows.

Theorem 2. The tree language L is regular, but is not recognized by any tree-
walking automaton.

Showing that L is regular is not difficult: it is recognized by a bottom-up de-
terministic automaton with three states recognizing, respectively, the set of blank
trees, the set of trees whose branching structure has only branches of even length,
and the set of trees whose branching structure has only branches of odd length. For
completeness, a fourth “error” state can be added.

Fact 2.2 below shows that a stronger result holds.
Fact 2.2. The tree language L is definable in first-order logic with the prefix

relation and the left and right successor relations.
Proof. First note that there is a first-order logic formula with one free variable,

which is true in exactly the branching nodes of a tree. Therefore, the nodes of the
branching structure bs(t) can be interpreted as the branching nodes of t. (Note
that for a node interpreted by v, its left successor is interpreted as “first branching
node lexicographically after or at the left successor of v,” and similarly for the right
successor.) It follows that if K is a property of branching structures defined by a first-
order formula ϕ, then bs−1(K) is also defined by a first-order formula. The first-order
formula for bs−1(K) is obtained from ϕ by restricting quantification to branching
nodes and replacing the left/right successors by their abovementioned interpretations
(the prefix relation is not changed).

Therefore, the statement of the fact will follow if we establish that the language K
is definable in first-order logic. This latter result is Lemma 5.1.8 in [12]. For com-
pleteness, we provide a proof for it below.

The main idea is that first-order logic can express whether a leaf in (01)∗(ε + 0)
is at even depth or not. We will refer to such a leaf as the middle leaf of the tree.
A first-order formula can detect the middle leaf by checking that each node above it
is either the leaf itself, the father of the leaf, the right child of a left child, the left
child of a right child, the left child of the root, or the root itself. The middle parity
of a tree is defined to be the parity of the depth of the middle leaf; it is definable in
first-order logic since the middle leaf is at even depth if and only if it is a left child.
The middle parity of a node is defined to be the middle parity of the subtree rooted
at this node.

Let M be the set of trees whose middle parity is even, and for which all children
of any internal node have the same middle parity. We claim that K = M . According
to the previous remarks, this implies that K is definable in first-order logic.

The inclusion K ⊆ M is obvious. For the other direction, let t be a tree outside K.
If all leaves in t have the same depth parity, then the middle parity is odd and t /∈ M .
Otherwise, consider a node in t of maximal depth whose subtree has leaves of both
even and odd depth. But then by maximality, the middle parities of this node’s
children must be different and t /∈ M .

The hard part in the proof of Theorem 2 remains: we need to show that the tree
language L is not recognized by any tree-walking automaton. The remainder of this
paper is devoted to proving this result.

In the next section, we define patterns; these are the same as those used in [3].
A pattern is a particular type of tree with distinguished nodes, called ports. As
in [3], we consider three particular patterns (the basic patterns) that confuse a tree-
walking automaton. Then, in section 4, to every blank tree t we associate a tree made
out of basic patterns (its pattern expansion) whose branching structure—where ports
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are considered as a-leaves—is t and is confusing for the automaton. We then study
throughout sections 5 and 6 the possible runs of the automaton in expansions and
their images in the original tree t. This study results in a precise understanding of
the behavior of the automaton in expansions: it can perform only a fixed number of
simple behaviors—such as left-to-right depth-first search, a move back to the root, or
nondeterministic search of a leaf—and can only (nondeterministically) switch between
these behaviors a bounded number of times. In section 7, we use this knowledge about
the tree-walking automaton for proving that it cannot recognize L. In particular, we
show that a simple local transformation, called the rotation, applied to a sufficiently
big tree cannot be detected by the automaton while it transforms a tree in the language
into one which is not in the language.

A more detailed overview of the proof is found in section 4.2, after the concepts
of pattern and pattern expansion have been introduced.

We fix for the remainder of the paper a tree-walking automaton

A = (Q, {a,b}, I, F, δ).

Eventually, we will show that A cannot recognize the tree language L. As noted in
the section on symmetry, we assume without loss of generality that the automaton A
is self-symmetric. We also assume without loss of generality that the automaton has
at least two states.

3. Patterns. In this section we define patterns, develop a pumping argument
for them, and then study its consequences for the automaton.

Patterns are fragments of trees with holes (called ports) in them. There are two
types of ports: leaf ports, which are in the leaves, and the root, which is also called a
port. Patterns can be assembled by gluing the root port of one pattern to a leaf port of
another pattern. A tree-walking automaton naturally induces an equivalence relation
on such patterns: two patterns (with the same number of ports) are equivalent if in
any context the automaton cannot detect the difference when one pattern is replaced
by another. This equivalence relation (technically, a slightly finer one, which speaks
of states of the automaton) is the key notion in the study of patterns.

3.1. Patterns and pattern equivalence. A pattern is an {a,b, ∗}-tree where
the labels a and ∗ are found only in the leaves. For technical reasons we require that a
pattern have at least two nodes and that all ∗-labeled leaves be left children. A blank
pattern is any pattern with no a-labeled leaf. The ith ∗-labeled leaf (numbered from
left to right, starting from 0) is called the ith port. We number the ports from 0 to
be consistent with the usual tree terminology, where a left successor is denoted by 0
and a right successor by 1. Port ε stands for the root. The number of leaf ports is
called the arity of the pattern. In particular, patterns of arity 0 are {a,b}-trees. See
Figure 3.1 for an illustration. Given an n-ary pattern Δ and n patterns Δ0, . . . ,Δn−1,
the composition Δ[Δ0, . . . ,Δn−1] is the pattern obtained from Δ by simultaneously
substituting each pattern Δi for the ith port. We also allow some Δi’s to be ∗. In
this case, nothing is changed for the corresponding ports. We write Δ[Δi/i] in the
particular case where all Δj ’s but Δi are ∗; i.e., a single substitution is performed at
port i. Given a set P of patterns, we denote by C(P ) the least set of patterns which
contains P and is closed under composition.

A run in a pattern is defined just as a run in a tree, except that the ports (both
root and leaf) are treated as being nonleaf left children with the blank label. The
latter assumption is for technical reasons; it will allow us to compose runs in larger
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664 MIKO�LAJ BOJAŃCZYK AND THOMAS COLCOMBET

0 1 n-1

Fig. 3.1. A pattern of arity n.

( p,i  )

( q,ε )

Fig. 3.2. A pattern Δ with (p, i, q, ε) in δΔ.

Fig. 3.3. The patterns Δ0, Δ1, and Δ2.

patterns from runs in smaller ones. Moreover, we require that a run in a pattern visit
ports at most twice: a port may occur only in the first and last configurations. In the
following definition, illustrated by Figure 3.2, we show how to describe a transition
relation corresponding to a pattern for the automaton.

Definition 3. The automaton’s transition relation over an n-ary pattern Δ,

δΔ ⊆ (Q× {ε, 0, . . . , n− 1})2,

contains (p, i, q, j) if in Δ there is a run from state p in port i to state q in port j.
From the point of view of the automaton, the relation δΔ sums up all important

properties of a pattern, and we consider two patterns equivalent if they induce the
same δ relation; i.e., patterns Δ and Δ′ are equivalent if δΔ = δΔ′ . This equivalence
relation is a congruence with respect to composition of patterns, thanks to the tech-
nical assumptions. The essence of this equivalence is that if one replaces a subpattern
by an equivalent one, the automaton is unable to see the difference. Here, we only
consider contexts that are consistent with our technical assumptions: the root of the
pattern corresponds to a left child, and the nodes plugged into the leaf ports are not
leaves and have the blank label.

The following lemma was shown in [3, Lemma 9].
Lemma 3.1. There are blank patterns Δ0,Δ1,Δ2—of respective arities 0, 1,

and 2—such that any pattern in C({Δ0,Δ1,Δ2}) of arity i = 0, 1, 2 is equivalent
to Δi.

These patterns will be used a lot in the constructions below. To keep the drawings
uncluttered, we omit specifying the names Δ0, Δ1, and Δ2, as this information can
be reconstructed from the number of leaves; see Figure 3.3.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWA DO NOT RECOGNIZE ALL REGULAR LANGUAGES 665

Note that the lemma may fail for i = 3 when nondeterministic automata are
involved; see [3]. The patterns Δ0, Δ1, and Δ2 are the key to our proof. In a
sense, their construction encapsulates all of the pumping arguments that we will do
with respect to the automaton A. For instance, the pattern Δ1 is equivalent to a
composition of any number of copies of Δ1 patterns. In particular, if the automaton
can go from the leaf port of Δ1 to the root port, then there must be a state that is
used twice along the way. We write CA to denote the set C({Δ0,Δ1,Δ2}); from now
on almost all patterns considered will be taken from CA.

3.2. Inner loops. Although simply defined, the relation δΔ is rather cumber-
some to work with. The automaton may do some redundant moves, such as going
one step down and then one step up, without any apparent purpose (a phenomenon
called oscillation in [3]). It is convenient to eliminate this obfuscating phenomenon.
This is the purpose of the inner loop relation introduced in the next definition.

First, however, we state Fact 3.2, which is a consequence of Lemma 3.1. In this
statement and elsewhere, by the expression plugging the Δ1 pattern into some/any
port of a pattern Δ, we refer to one of the patterns Δ1[Δ],Δ[Δ1/1], . . . ,Δ[Δ1/n],
where n is the arity of the pattern Δ. Similarly, the pattern obtained by plugging Δ1

into all ports of a pattern Δ represents the pattern Δ1[Δ[Δ1, . . . ,Δ1]].

Fact 3.2. Plugging the Δ1 pattern into some port of a pattern in CA yields an
equivalent pattern.

Proof. The proof is by induction on the structure of the pattern, using Lemma 3.1
as the basis of the induction.

Consider now a composition of two patterns Δ[Δ′/i] and the junction of these
patterns, i.e., the node v that corresponds to port i in Δ. By Fact 3.2, we may well
assume that v is on the junction of two Δ1 patterns: one plugged into the leaf port i
of Δ and one plugged into the root port of Δ′. In particular, any loop that can be
done on the junction of two Δ1 patterns can be replicated in Δ[Δ′/i]. Hence the
importance of such loops; we call them “inner loops” in the following definition (see
also Figure 3.4 for an illustration).

Definition 4. The inner loop relation over states is the least transitive and re-
flexive relation →ε over states such that p →ε q holds whenever (p, ε, q, ε) or (p, 0, q, 0)
belongs to δΔ1 .

Fig. 3.4. An inner loop.

The following lemma formalizes the comments preceding the introduction of the
inner loop relation. It shows how →ε describes all possible loops on interfaces between
patterns from CA.

Lemma 3.3. Let Δ,Δ′ ∈ CA be patterns of nonzero arity, and let v be the junction
node corresponding to the leaf port i of Δ and the root of Δ′. There is an inner loop
p →ε q if and only if there is a run from (p, v) to (q, v) in Δ[Δ′/i].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Before proceeding with the proof, we would like to comment on the relevance of
this lemma. Recall that by our definition of runs in patterns, the loop from (p, v) to
(q, v) is not allowed to visit any of the ports. Therefore, the relation →ε tells us what
possible loops can be done on the interface of two patterns without visiting any ports.
In particular, the possible types of such loops do not depend on the two patterns Δ
and Δ′, as long as they are from CA.

Another important consequence of this lemma is that it gives us a sort of normal
form of runs through patterns in CA. Any loop on a junction between patterns can
be replaced by the →ε relation; therefore a run through a pattern in CA can be seen
as going directly from the source to the target, with all the loops being represented
by the →ε relation.

Proof. Assume that p →ε q. By definition of →ε, there is a run from (p, w) to
(q, w) in Δ1[Δ1], where w is at the junction of the two Δ1 patterns. But this run can
be reused within Δ[Δ′/i], since by Fact 3.2 we may assume without loss of generality
that both Δ and Δ′ have Δ1 plugged into all their ports.

Reciprocally, assume that there is a run from (p, v) to (q, v) in the pattern Δ[Δ′/i].
This run can be reused in the same pattern where a Δ0 has been substituted for all
ports except for some leaf port—say port 0—of Δ′. By Lemma 3.1, this new pattern
is equivalent to the composition of two Δ1 patterns. It then follows by definition that
p →ε q holds.

Definition 5. For a pattern Δ, the relation γΔ is the set of tuples (p, i, q, j)
such that p →ε p

′ and q′ →ε q for some p′, q′ satisfying (p′, i, q′, j) ∈ δΔ.
Observe that a consequence of the definition above is that if p →ε q, then (p, i, q, i)

belongs to γΔ for all ports i of Δ.
The γ relation has nicer closure properties than δ; hence from now on we will be

using it—and not the δ relation—to describe runs in patterns. For instance, γ satisfies
the following “swallowing” property:

(p, ε, q, 0), (q, ε, r, 0), (r, 0, s, ε) ∈ γΔ1 implies (p, ε, s, 0) ∈ γΔ1 .

This is because (q, ε, r, 0), (r, 0, s, ε) ∈ γΔ1 implies q →ε s. Another useful property of
the γ relation—resulting from the equivalence of Δ1 and Δ1[Δ1]—is as follows:

(p, ε, q, 0) ∈ γΔ1 iff (p, ε, r, 0), (r, ε, q, 0) ∈ γΔ1 for some r.

Note that the left-to-right implication fails for the δ relation, since the state r may
require some loops on the junction between the Δ1 patterns before the run reaches
(q, 0).

Obviously, if two patterns are equivalent, then they have the same γ relations.
Let us remark also that a form of the converse also holds: if two patterns in CA have
the same γ relations, then they are equivalent. However, this fact is of no use in the
remainder of the proof, and we need not establish it.

4. Pattern expansions and the proof strategy. In this section we introduce
pattern expansions and then give an overview of our proof strategy.

4.1. Pattern expansions. The pattern pre-expansion of a blank tree t is the
pattern obtained by replacing every inner node of t with the pattern Δ2 and replacing
every leaf with a port ∗. Thus, the pattern pre-expansion has as many leaf ports as
t has leaves.

The pattern expansion Δt of t is the pattern obtained by plugging Δ1 into all
ports of the pattern pre-expansion (see Figure 4.1). Note that the expansion and
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Fig. 4.1. A blank tree t and its pattern expansion Δt.

the pre-expansion are equivalent as patterns. With every node v of t we associate a
node [v] in the pattern Δt in the natural way (see Figure 4.1); this node does not
depend on t. A junction node in a pattern expansion is any node of the form [v];
it is called a junction leaf when v is a leaf of t. Note that a junction leaf is not a
leaf in the pattern Δt, since it has Δ1 as its subtree. The Δ1 patterns plugged into
the pattern expansion are used so that every junction node is on the interface of two
patterns of nonzero arity in CA. In particular, junction nodes are a suitable place for
using Lemma 3.3.

We denote by Δa a fixed pattern of arity 0 equal to Δ1[Δ
′
a], where Δ′

a is some
zero arity pattern containing exactly one a-labeled leaf. The particular form of Δ′

a

is not important, but we can fix it to be a two-leaf tree with a in the left leaf and
b in the other nodes. The only two important points concerning Δa are first, that
it contains a single leaf labeled by a, and second, that Δa is equivalent to Δ1[Δa].
This last point is obtained by remarking that Δa equals Δ1[Δ

′
a] which is equivalent

to Δ1[Δ1[Δ
′
a]], because Δ1[Δ1] is equivalent to Δ1 and equivalence is a congruence

with respect to composition.
Given a blank tree t, the tree Δa

t is obtained by plugging Δa into all leaf ports
of Δt; i.e., Δa

t = Δt[Δa, . . . ,Δa]. Clearly the branching structure of Δa
t is t. If the

tree-walking automaton were to accept the tree language L, it would have to accept
every tree Δa

t for t ∈ K and reject every tree Δa
t for t /∈ K. We will eventually

show that this is impossible, due to the way tree-walking automata get lost in pattern
expansions.

In order to avoid confusion we remark here that Δa
t is treated as a tree and not

a pattern of zero arity. Therefore, a run over Δa
t is allowed to visit the root several

times, as opposed to runs over patterns of zero arity.
A junction configuration is defined to be a configuration of the form (q, [v]) for

some node v ∈ {0, 1}∗. We will write such a configuration as [q, v]. If v is a node of a
blank tree t, then [q, v] can be interpreted as a configuration in either the pattern Δt

or the tree Δa
t . In either case, [q, v] is a configuration whose node is a junction node.

Moreover, if v is a leaf of t (i.e., [v] is a junction leaf), the junction configuration is also
called a leaf configuration (this, of course, is relative to the tree t). We use square
brackets for junction configurations; these describe configurations in the branching
structure t. On the other hand, normal configurations are written with round brackets;
these describe configurations in the pattern expansion Δt or in the tree Δa

t .
The following two lemmas show that the →ε relation and the γΔ2 relation describe

the way our fixed tree-walking automaton can move in a pattern expansion, from a
junction node to itself or to a neighboring junction node, respectively.

Lemma 4.1. Let t be a blank tree and v a node of t. The following statements
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are equivalent for any states p and q:
1. In the pattern expansion Δt there is a run from [p, v] to [q, v].
2. p →ε q.
3. In the pattern expansion Δt there is a run from [p, v] to [q, v] that does not

visit any other junction node [w], w �= v.
Proof. From 1 to 2. By cutting the pattern expansion Δt at the junction node [v],

we can decompse Δt as Δ[Δ′/i] for two patterns Δ and Δ′ in CA of nonzero arity, and
i the number of [v] as a leaf port of Δ. Applying Lemma 3.3 to this decomposition,
we get p →ε q.

From 2 to 3. Let Δ and Δ′ be either Δ1 or Δ2, and let i be a leaf port of Δ. Let
v′ be the port i of Δ. By using p →ε q and applying Lemma 3.3 to Δ[Δ′/i], we obtain
that there is a run from (v′, p) to (v′, q) which does not visit the ports of Δ[Δ′/i]. By
definition of the pattern expansion Δt, the junction node [v] appears either as port 0
of a Δ1 pattern or as port 0 or 1 of a Δ2 pattern. Similarly it is also the root port of
a Δ1 or a Δ2 pattern. Hence [v] can be identified with node v′ in a pattern Δ[Δ′/i]
above. We can transfer the run we had witnessed on Δ[Δ′/i] to Δt, obtaining a run
from [p, v] to [q, v] that does not visit any other junction node [w], w �= v.

From 3 to 1. The proof is straightforward.
Lemma 4.2. Let t be a blank tree and v · a, v · b nodes of t, with v ∈ {0, 1}∗ and

a, b ∈ {ε, 0, 1}. The following statements are equivalent for any states p and q:
1. In the pattern expansion Δt there is a run from [p, v · a] to [q, v · b].
2. (p, a, q, b) ∈ γΔ2 .
3. In the pattern expansion Δt there is a run from [p, v · a] to [q, v · b] that does

not visit any other junction node [w], w /∈ {v · a, v · b}.
Proof. From 1 to 2. Assume there is a run in Δt from configuration [p, v · a]

to configuration [q, v · b]. Let us first treat the case a = b. In this case p →ε q by
Lemma 4.1. Hence (p, a, q, b) ∈ γΔ2 (recall the observation following Definition 5).
Now let a �= b, and set c ∈ {ε, 0, 1} to be different from a and b. Let p′ be the
last state assumed by the run while visiting the junction node [v · a], and let q′ be
the first state assumed at the junction node [v · b] after crossing [v · a] for the last
time. If the corresponding subrun from [p′, v · a] to [q′, v · b] does not visit [v · c], then
(p′, a, q′, b) belongs to δΔ2 . Otherwise it visits [v · c], and we let p′′ and q′′ be the
first and last state, respectively, assumed by that subrun at [v · c]. Then p′′ →ε q′′,
by Lemma 4.1. Also, by construction, (p′, a, p′′, c) and (q′′, c, q′, b) are in δΔ2 . This
shows (by plugging Δ1 into port c of Δ2) that (p′, a, q′, b) belongs to δΔ2 . Moreover,
by Lemma 4.1, we have p →ε p′ and q′ →ε q. By definition of γΔ2 , (p, a, q, b) ∈ γΔ2

follows.
From 2 to 3. Since (p, a, q, b) ∈ γΔ2 , there exist two states p′ and q′ such that

p →ε p
′, (p′, a, q′, b) ∈ δΔ2

, and q′ →ε q.

By Lemma 4.1, these three properties provide a run in the pattern expansion Δt that
successively passes through the configurations

[p, v · a], [p′, v · a], [q′, v · b], [q, v · b]

without visiting any junction node other than [v · a] and [v · b].
From 3 to 1. The proof is straightforward.
The above lemma shows that runs of the automaton between neighboring junction

nodes in pattern expansions can be assumed to have a very particular form. Take,
for instance, a blank tree t and two nodes v and w, with v above w. If there is a run
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in Δt that goes from [v] to [w], then, by Lemma 4.2, there is a run that does this
by going directly from v to w using the shortest path. This means performing only
a series of “steps” of the form (p, ε, q, 0), (p, ε, q, 1) ∈ γΔ2 . A similar characterization
holds when v and w are incomparable: the automaton first goes directly from [v] in
the up direction, then does one of the steps (p, 0, q, 1), (p, 1, q, 0) ∈ γΔ2 (a “go to the
sibling” move), and then goes directly downward to [w]. This principle is formalized
in Lemma 6.1.

4.2. The proof strategy. We are now ready to give an overview of the proof
strategy. Recall that our aim is to find trees s ∈ L and s′ /∈ L such that any accepting
run in s can be transferred to s′. In fact, the trees s, s′ will be, respectively, of the
form Δa

t and Δa
t′ for some blank trees t ∈ K and t′ /∈ K. Therefore, we need to

develop a good understanding of runs within trees of the form Δa
t .

The remainder of this paper is divided into three sections, which correspond to
ever larger parts of a run over a tree of the form Δa

t . Such a run can be analyzed on
three scales.

The greatest scale is analyzed in section 7. Fix a tree Δa
t . In this greatest scale, we

will be most interested in runs that connect leaf configurations to one another, without
passing through the root of the tree. (This is because, without loss of generality, we
may assume the root is visited at most |Q| times.) Consider such a run that goes
from one leaf configuration [p, v] to another leaf configuration [q, w]. Within such a
run, we can isolate all the intermediate leaf configurations:

[p, v] = [r1, u1], . . . , [rn, un] = [q, w].

Since no leaf configurations are visited in the meantime, a run from [ri, ui] to [ri+1, ui+1]
corresponds to either (a) a loop in the root of the pattern Δ1[Δa], or (b) a run from
one junction leaf to another in the pattern Δt. Case (a) can be treated as a sort of
ε-transition for leaf configurations. The interesting case is (b).

In section 6, we treat the runs of type (b), which correspond to the intermediate
scale. These runs are in Δa

t , but since no a-labeled leaf is visited during those runs,
they are also runs in the pattern expansion Δt. We first show that whether or not
there is a run of type (b) from [ri, ui] to [ri+1, ui+1] does not depend on the tree t but
only on the nodes ui and ui+1. This allows us to consider the notation [p, v] → [q, w],
meaning that there is a run from [p, v] to [q, w] in some (equivalently, every) pattern
expansion Δt for which v, w are nodes of t. A type of run that realizes [p, v] → [q, w] is
called a move; a classification of the possible types of move is the subject of section 6.

As preparation, in section 5, we consider the smallest scale: the pattern Δ2. By
Lemma 4.2, any move within a pattern expansion can be decomposed into a certain
number of traversals of the pattern Δ2. Hence the need for an investigation of the
relation γΔ2

.
Before proceeding, we describe in general terms the results of these investigations

in sections 5, 6, and 7.
The main result of section 5 is Proposition 5.10, which gives a characterization

of the possible ways the automaton can go from the leaf port to the root port of Δ1.
Generally speaking, this characterization says that the automaton either gets com-
pletely lost or must do some sort of depth-first search. Even though stated in terms
of the Δ1 pattern, these results can also be applied to the Δ2 pattern. Indeed, by
Lemma 3.1, any run from a leaf port to the root port in Δ2 can also be transfered
to Δ1, by simply plugging the unused leaf port with Δ0.

The main result of section 6 is Proposition 6.10. This proposition roughly says
that there are only eleven types of interesting moves between junction leaves in a
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pattern expansion. The interesting moves—called elementary moves—are moves such
as: “go to the next junction leaf to the left” or “go to any junction leaf to the left.”
Proposition 6.10 states that if a move is not elementary, then it contains a “shift,” a
phenomenon of inherent confusion for the automaton.

Finally, in section 7, we show that tree-walking automata cannot detect a properly
placed rotation, which concludes the proof. Given a blank tree T and a node x, the
rotation of T with the pivot x is the tree T ′ defined as follows: we move the subtrees
of x · 00, x · 01, and x · 1 to the new positions x · 0, x · 10, and x · 11 (see Figure 7.1).
Clearly doing a rotation in a tree with all leaves at even depth creates a leaf at
odd depth. We will show, however, that given a very large balanced blank tree T ,
one can find a pivot x such that Δa

T ′ cannot be distinguished from Δa
T by our fixed

tree-walking automaton A.

5. The pattern Δ2. In this section we investigate the γ relations of the patterns
Δ0, Δ1, and Δ2. The main result, Proposition 5.10, uncovers by a case distinction
the possible ways the tree-walking automaton can cross the pattern Δ1. This is
important for our analysis of pattern expansions, since by Lemma 4.2 every path
through a pattern expansion corresponds to a sequence of traversals of Δ2 patterns.

p � q if (p, ε, q, ε) ∈ γΔ0 p ↖ q if (p, 1, q, ε) ∈ γΔ2

p ↗ q if (p, 0, q, ε) ∈ γΔ2

p �a q if (p, ε, q, ε) ∈ γΔa p ↘ q if (p, ε, q, 1) ∈ γΔ2

p ↙ q if (p, ε, q, 0) ∈ γΔ2

p ↑ q if (p, 0, q, ε) ∈ γΔ1 p � q if (p, 1, q, 0) ∈ γΔ2

p ↓ q if (p, ε, q, 0) ∈ γΔ1
p � q if (p, 0, q, 1) ∈ γΔ2

p q if p ↖ q and not p ↗ q

p q if p ↗ q and not p ↖ q p q if p ↑ r ↗ r ↖ r ↑ q for some r

p q if p ↙ q and not p ↘ q p q if p ↓ r ↘ r ↙ r ↓ q for some r

p q if p ↘ q and not p ↙ q

Fig. 5.1. Graphical notation for γΔ0
, γΔa , γΔ1

, γΔ2
.

From now on, instead of the γΔ0 , γΔa , γΔ1 , and γΔ2
relations, we will be using

the more graphical notation depicted in Figure 5.1. Note that the p � q notation
may be somewhat misleading: we start with state p in port 1 and end in state q in
port 0. The left state is chronologically before the right one, although the movement
is in the left direction.

Due to the equivalences in Lemma 3.1, the relations γΔ1 , γΔ2
satisfy properties

such as the following, which we call swallowing rules:

(p, 0, q, 1) ∈ γΔ2 , (q, ε, r, 0) ∈ γΔ1
imply (p, 0, r, 1) ∈ γΔ2

.

Using our graphical notation, this can be rewritten into the first property among the
following ones:

(5.1)

p � q ↓ r implies p � r,
p ↑ q � r implies p � r,
p � q ↓ r implies p � r,
p ↑ q � r implies p � r.
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We will now illustrate how time symmetry can be used to show the second implication;
the third and fourth are then obtained using space symmetry.

Let then p, q, and r be such that p ↑ q � r holds. As the reader may recall, our
tree-walking automaton is self-symmetric; i.e., there is an isomorphism i : Q → Q,
which maps the automaton onto its time-reversed variant. Let i(p), i(q), and i(r) be
the time-reversed counterparts of p, q, and r. By Fact 2.1, every run from p to q can
be reversed to obtain a run from i(q) to i(p); likewise for q and r. If we reverse a run
witnessing p ↑ q, we obtain a run witnessing i(q) ↓ i(p). In the same way, there is a
run witnessing i(r) � i(q). In particular, we have

i(r) � i(q) ↓ i(p).

Now we can apply the already shown first implication in (5.1), to obtain i(r) � i(p).
Since the isomorphism i is its own inverse, we obtain the desired p � r.

In a similar way, using space symmetry, we can derive the last two statements
of (5.1) from the first two. Later on, we will be using this type of reasoning a lot,
omitting the details of the argumentation.

The following lemma shows that the � and �a notation is not misleading in
suggesting a loop.

Lemma 5.1. The relations � and �a are transitive.
Proof. We do the proof only for �. We first claim that p � q holds if and only if

either p →ε q holds, or p ↓ p′ �∗ q′ ↑ q holds for some states p′, q′ (where �∗ is the
transitive closure of �).

The left-to-right implication of the claim is shown as follows. If p � q holds, then
there exist p′′, q′′ such that

p →ε p
′′, (p′′, ε, q′′, ε) ∈ δΔ0 , and q′′ →ε q.

Let us analyze the run corresponding to (p′′, ε, q′′, ε) ∈ δΔ0 in the pattern Δ1[Δ0]
(which is equivalent to Δ0), the junction node being v. If this run does not visit v,
then we have p′′ →ε q′′, and consequently p →ε q. Otherwise, there exist states p′

and q′ such that (p′′, ε, p′, 0) and (q′, 0, q′′, ε) belong to δΔ1 , and there is a path from
configuration (p′, v) to configuration (q′, v) in the pattern Δ1[Δ0]. From this path we
deduce p′ �∗ q′. Hence p ↓ p′ �∗ q′ ↑ q.

The right-to-left implication of the claim is shown as follows. If p →ε q, we
obviously have p � q. Otherwise, assume that there exist states p′, q′ such that
p ↓ p′ �∗ q′ ↑ q holds. Then there are states p′′, p′′′, q′′′, q′′ such that

p →ε p
′′, (p′′, ε, p′′′, 0) ∈ δΔ1 , p′′′ →ε p

′,

q′ →ε q
′′′, (q′′′, 0, q′′, ε) ∈ δΔ1 , and q′′ →ε q.

From p′′′ →ε p′ �∗ q′ →ε q′′′ we obtain p′′′ �∗ q′′′. Together with (p′′, ε, p′′′, 0) ∈ δΔ1

and (q′′′, 0, q′′, ε) ∈ δΔ1 we obtain a run from state p′′ in the root to q′′ in the root in
Δ1[Δ1[Δ0]] (which is equivalent to Δ0). Hence (p′′, ε, q′′, ε) belongs to δΔ0 . Together
with p →ε p

′′ and q′′ →ε q we obtain p � q. This concludes the proof of the claim.
Let us now show the transitivity of �. Assume p � q � r. If either p →ε q or

q →ε r holds, then we have p � r by definition of �. Otherwise, according to the
claim above, there exist states p′, q′, q′′, r′ such that

p ↓ p′ �∗ q′ ↑ q ↓ q′′ �∗ r′ ↑ r.
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672 MIKO�LAJ BOJAŃCZYK AND THOMAS COLCOMBET

Since q′ ↑ q ↓ q′′ implies q′ →ε q
′′, we obtain p′ �∗ r′ by transitivity of �∗. Using the

other direction of the claim, we get p � r.
For �a, the proof is identical. The only property required from the pattern Δa

is that it is equivalent to Δ1[Δa] (and hence to Δ1[Δ1[Δa]]); this fact was observed
above while defining the pattern Δa.

5.1. Depth-first search. In this section we define the key concept of depth-
first search (DFS). The main result, Lemma 5.5, states that p p can only be realized
using a DFS (similarly for , , and ).

qqqq

qq

Fig. 5.2. A right-to-left DFS.

Definition 6. A state pair (q, q̄) is a right-to-left DFS (see Figure 5.2) if

q ↘ q, q � q̄, q̄ � q, and q̄ ↗ q̄.

The pair is a left-to-right DFS if

q ↙ q, q � q̄, q̄ � q, and q̄ ↖ q̄.

Throughout the paper, we will try to keep the convention that if two states q̄
and q appear simultaneously, then q̄ is a state that is going up in the tree and q is a
state that is going down in the tree.

We now illustrate the way a left-to-right DFS allows A to walk through a pattern
expansion. Consider a pattern expansion Δt and a left-to-right DFS (q, q̄). Using
q ↙ q repeatedly, the automaton can go from q in [ε] to q in the leftmost junction
leaf (all this reasoning is done using Lemma 4.2). If v and w are successive leaves
of t, then the automaton can go from [q̄, v] to [q, w]. This is done by using a sequence
of steps q̄ ↖ q̄, then doing a step of the form q̄ � q, and then doing a sequence of
q ↙ q steps. Finally, using q̄ ↖ q̄, the automaton can go from q̄ in the rightmost
junction leaf to q̄ in [ε]. Moreover, if we plug Δ0 into every leaf port of Δt, then q � q̄
together with the above observations can be used to obtain a left-to-right DFS of all
the junction nodes in the pattern Δt[Δ0, . . . ,Δ0].

In Lemma 5.4, we will also show the converse: without doing a DFS, the au-
tomaton cannot systematically visit all junction nodes in a pattern of the form
Δt[Δ0, . . . ,Δ0]. First, however, we provide some preparatory results. In the following
lemma, we say that a run omits a node if it never crosses it.

Lemma 5.2. Let t be a blank tree, with nodes v, w. Let ρ be a run in Δt[Δ0, . . . ,Δ0]
from configuration [p, v] to configuration [q, w] for some states p, q. Then the following
hold:

1. If v = w, then p � q.
2. Assume v = w, and let u be a node strictly below v. If ρ omits [u], then

p →ε q.
3. Assume v is strictly above w, and let u be a node strictly below w. If

ρ omits [u], then p ↓ q.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWA DO NOT RECOGNIZE ALL REGULAR LANGUAGES 673

4. Assume v is strictly above w, let u be a node strictly below w, and let u′ be
a node to the right of w and strictly below v. If ρ omits [u] and [u′], then
p ↙ q.

5. Assume v is to the left of w, and let u, u′ be nodes strictly below v, w, respec-
tively. If ρ omits [u] and [u′], then p � q.

Proof. We would like to clarify that Δt[Δ0, . . . ,Δ0] is treated here as a pattern
of arity zero and not a tree. Therefore, by definition of runs in patterns, ρ never
visits the root port. Below, we successively treat the five cases. Each explanation is
followed by a drawing illustrating the situation.

1. By transitivity of � (Lemma 5.1), it suffices to consider runs ρ where v is
visited only in the first and last configurations. If the run never goes below [v],
then, by putting a port in the node [v], the run can be replicated in a pattern
equivalent to Δ1, yielding (p, 0, q, 0) ∈ δΔ1 and hence p →ε q. Otherwise, the
run visits only nodes below [v] and is therefore a root-to-root run in a pattern
equivalent to Δ0.

[v ]

2. Again, by transitivity of the →ε relation, it suffices to consider the case
where v is visited only in the first and last configurations. There are two
cases. Either the run never goes below [v] and we can reuse the argument of
item 1, or the run visits only nodes below [v] but not the node [u]. Therefore,
if we put a port into node [u], ρ becomes a root-to-root loop in a pattern
equivalent to Δ1, witnessing (p, ε, q, ε) ∈ δΔ1 ; consequently p →ε q.

[v ]

[u ]

3. First we show that, without loss of generality, we may assume that ρ visits
[v], [w] only in the first and last configurations. Indeed, if we take the longest
prefix of ρ that is a loop in [v], this prefix satisfies the assumptions of item 2,
and can therefore be replaced by an inner loop →ε. The same can then be
done for the suffix, removing additional visits to [w]. Once ρ is assumed to
visit [v] and [w] only once, it is easily seen to witness (p, ε, q, 0) ∈ δΔ1 and
hence p ↓ q: if we put the root port in [v] and a leaf port in [w], we get a
pattern equivalent to Δ1.

[w ]

[v ]

[u ]
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4. As in the previous point, we may assume that ρ visits [v], [w] only in the first
and last configurations (we use the assumption of the node [u] being omitted
and below both [v] and [w]). If we put one leaf port (the left port) in [w],
one leaf port (the right port) in [u′], and the root port in node [v], we get
a pattern equivalent to Δ2. Then the run ρ witnesses (p, ε, q, 0) ∈ δΔ2 , and
hence p ↙ q.

[w ]

[v ]

[u ]
[u ] 

´

5. Again, we assume that ρ visits [v], [w] only in the first and last configurations
(this time, we need to use both [u] and [u′]). We put the left port in node [v]
and the right port in node [w] (the root port stays unchanged).

[w ][v ]

[u ] [u  ]́

We now need a simple combinatorial result concerning labeling of trees.
Lemma 5.3. Let Σ be an alphabet, and consider a balanced Σ-tree t of depth at

least |Σ|+ 1. There exist three nodes w,w0, w1 with the same label such that w0 is to
the left of w1 and w is above both w0 and w1.

Proof. Induction on |Σ|. The base case of |Σ| = 1 is obvious. Otherwise let a be
the root label of t. If both the subtrees of nodes 0 and 1 contain a’s, we are done.
Otherwise one of these is a Σ \ {a}-tree, and the induction hypothesis can be applied
to it.

The following lemma is the first important characterization of runs on patterns.
It says that there are only two types of root-to-root runs over the pattern Δ0: either
a run that does not visit anything and only does an inner loop →ε, or a systematic
DFS traversal.

Lemma 5.4. Let q, q̄ be such that q � q̄. Then either q →ε q̄ or there is a
(left-to-right or right-to-left) DFS (r, r̄) such that q ↓ r and r̄ ↑ q̄.

Proof. Let t be the blank balanced tree of depth |Q|2 + 2. Let Γ be the pattern
obtained from Δt by substituting Δ0 for all leaf ports; i.e., Γ = Δt[Δ0, . . . ,Δ0].
By definition of expansions, the pattern Γ can be rewritten as Δ1[Γ

′] in which, by
Lemma 3.1, the pattern Γ′ is equivalent to Δ0.

By q � q̄, there exists a run in Γ from [q, ε] to [q̄, ε]. First we show that we can
furthermore enforce the following property (*) of ρ: every subrun starting and ending
at the same junction node [v] for v a nonleaf node of t visits only junction nodes
below [v]. This is proved by induction on the number of junction nodes in the run.
Indeed, take a minimal loop in some junction node [v] that visits junction nodes not
below [v]. By minimality, the loop never visits nodes strictly below [v]. Hence, by
Lemma 5.2 (item 2) and Lemma 4.1, this loop can be replaced by another, with the
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same initial and final configurations, which does not visit any junction node other
than [v].

Then let ρ be a run from [q, ε] to [q̄, ε] that satisfies property (*).
If ρ does not visit some junction node, then by Lemma 5.2, q →ε q̄ holds.
Otherwise, given a node v of t, let first(v) be the state in which the junction

node [v] is visited for the first time in the run ρ. Similarly we define last(v). By
Lemma 5.3, there are three nonleaf nodes w,w0, w1 of t with the same values of first
and last , and such that w is above both w0 and w1, and w0 is to the left of w1 (see
Figure 5.3).

[w ]

[w  ]₀
[w  ]₁

Fig. 5.3. The nodes [w], [w0], and [w1].

First consider the case where [w0] is visited before [w1]. Let r be first(w) and
r̄ be last(w). By Lemma 5.2, r � r̄. From property (*) we derive that the run
cannot visit [w0], then [w1], and then again [w0]. Hence we can apply Lemma 5.2 to
configurations [r̄, w0] and [r, w1] and obtain r̄ � r. Also, from the definition of first
and last and Lemma 5.2, we obtain r ↙ r and r̄ ↖ r̄. Overall (r, r̄) is a left-to-right
DFS. Furthermore, by Lemma 5.2 (item 2 or 3), either q →ε r or q ↓ r. In the first
case, in combination with r ↓ r, we also obtain q ↓ r. We similarly have r̄ ↑ q̄.

If [w1] is visited before [w0], a similar argument gives a right-to-left DFS.
We now proceed to another one of our DFS characterizations: the relation can

be realized only by doing a DFS.
Lemma 5.5. If q̄ q̄, then (q, q̄) is a left-to-right DFS for some state q.
Proof. Unraveling the definition of q̄ q̄, we have that q̄ ↖ q̄ holds, but q̄ ↗ q̄

does not. Let t be the blank balanced binary tree of depth 3 (i.e., with four leaves).
Let Γ be the pattern Δt[Δ0,Δ0,Δ0,Δ0]. Since q̄ ↖ q̄ implies q̄ ↑ q̄, and the pattern

Δ2[∗,Δ2[Δ1[Δ0],Δ1[Δ0]]]

is equivalent to Δ1, there is a run in this pattern from [q̄, 0] to [q̄, ε]:

[1 ][0 ]

This run has to visit the junction node [1] since otherwise Lemma 5.2 would give
q̄ ↗ q̄, a contradiction. Let p be the first state assumed by this run at the junction
node [1], and let p̄ be the last.

By Lemma 5.2, we have q̄ � p, p � p̄, and p̄ ↖ q̄. We cannot have p →ε p̄, since
we would otherwise get q̄ ↗ q̄. By Lemma 5.4, we obtain states r, r̄ such that (r, r̄)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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is a DFS and p ↓ r, r̄ ↑ p̄. By swallowing, we obtain q̄ � r, r̄ ↖ q̄ (and we can forget
about states p and p̄).

Two cases have to be considered depending on the orientation of the DFS (r, r̄).
• Assume first that (r, r̄) is a left-to-right DFS. We have r ↓ r and r̄ ↑ q̄. Thus,

r � q̄ follows from r ↓ r � r̄ ↑ q̄. We obtain that (r, q̄) is a left-to-right DFS
as well.

• Otherwise, (r, r̄) is a right-to-left DFS. By r ↘ r � r̄ ↖ q̄, we get r →ε q̄.
But then q̄ � r →ε q̄ ↖ q̄ gives q̄ ↗ q̄, a contradiction.

5.2. Subtree omission. This section is devoted to showing the following propo-
sition.

Proposition 5.6. For all p and q, p ↑ q if and only if p ↖ q or p ↗ q.
The right-to-left implication is obvious; the remainder of this section is devoted

to showing the left-to-right implication. The intuitive idea is illustrated in the picture
below: whenever there is a run as on the left, there is also an equivalent run as in the
middle or on the right.

We first show the following intermediate result.
Lemma 5.7. If q̄ ↑ q̄, then
• q̄ ↗ q̄ or q̄ ↖ q̄, or
• there is a right-to-left DFS (r, r̄) such that q̄ � r and r̄ ↑ q̄.

Proof. As in the proof of Lemma 5.5, we obtain that q̄ ↗ q̄ holds or there are two
states r, r̄ such that (r, r̄) is a DFS and both q̄ � r and r̄ ↑ q̄ hold. The first case as
well as the second when the DFS is right-to-left are conclusions of the lemma.

In the remaining case, (r, r̄) is a left-to-right DFS. But then by q̄ � r � r̄ ↖ r̄
we obtain q̄ ↑ r̄. Combining this with r̄ ↖ r̄ ↑ q̄, we obtain the desired q̄ ↖ q̄.

A variant symmetric to the one above can be obtained, where (r, r̄) is a left-to-
right DFS and q̄ � r and r̄ ↑ q̄ hold.

Lemma 5.8. If p ↑ q, then p ↑ r ↑ r ↑ q for some state r.
Proof. This results from a pumping argument. Since Δ1[Δ1] is equivalent to Δ1,

we can expand the Δ1 pattern into the composition of n times itself for any n. This
means that there are states r1, . . . , rn such that p = r1 ↑ · · · ↑ rn = q.

If n is large enough, some state r is repeated, and the result follows by transitivity
of ↑.

We will now prove Proposition 5.6. Since we have the implication

p ↑ r ↖ r ↑ q implies p ↖ q

and its symmetric counterpart for ↗, Lemma 5.8 allows us to restrict our attention
to the case where p = q. That is, we need to show that p ↑ p implies p ↖ p or p ↗ p.

If in either Lemma 5.7 or its symmetric variant the first case holds, we are done.
Otherwise there are states q, q̄, r, and r̄ such that

p � q, q ↘ q, q � q̄, q̄ � q, q̄ ↗ q̄, q̄ ↑ p,

p � r, r ↙ r, r � r̄, r̄ � r, r̄ ↖ r̄, r̄ ↑ p.
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By p � r � r̄ � r we get p →ε r. Together with q̄ ↑ p and r ↓ r, this gives q̄ →ε r.
Together with q � q̄ and r � r̄, this yields q � r̄ by Lemma 5.1. Then p � q � r̄ ↖ r̄
shows p ↑ r̄. Finally, we combine this with r̄ ↖ r̄ ↑ p and obtain p ↖ p.

5.3. A characterization of moves over Δ1. In this section, we present a
classification of the possible ways the automaton can go in Δ1 from the leaf port
to the root port. This is the main result of section 5. Before we proceed with
Proposition 5.10, we show a certain “denseness” property of the relations , ,
and .

Lemma 5.9. For any states p, q and R = , , ,

p R q implies p R r R r R q for some state r.

Proof. The case of follows straight from the definition. We do only ; the other
case is done symmetrically. If p q, then p ↗ q, and thus also p ↑ q. By Lemma 5.8,
there must be some state r such that p ↑ r ↑ r ↑ q. By Proposition 5.6, we must
have at least one of r ↗ r, r ↖ r. But we cannot have r ↖ r, since this would yield
p ↖ q and contradict p q; hence r r. For similar reasons p r and r q must also
hold.

Note that the converse implication may fail. This is because p q requires p ↖ q
to fail, while there may be some other state s satisfying p ↑ s ↖ s ↑ q.

Proposition 5.10. If p ↑ q, then
1. p q, or
2. p q, or
3. p q, or
4. for some states r1, r2

(a) p ↑ r1 r1 ↑ q and p ↑ r2 r2 ↑ q, or
(b) p ↑ r1 r1 ↗ r2 r2 ↑ q, or
(c) p ↑ r1 r1 ↖ r2 r2 ↑ q.

Proof. If neither case 2 nor 3 holds, then by Proposition 5.6 we must have both
p ↗ q and p ↖ q. Let R↑(p, q) be the set of states r such that p ↑ r ↑ r ↑ q holds; this
set is nonempty by Lemma 5.8. Let R↗(p, q) ⊆ R↑(p, q) be the set of those states r in
R↑(p, q) such that r ↗ r. Similarly we define R↖(p, q). Note that by Proposition 5.6,

R↑(p, q) = R↗(p, q) ∪R↖(p, q).

Now a case analysis proves the lemma:
• If R↗(p, q) ∩R↖(p, q) is nonempty, then item 1 holds.
• R↗(p, q) is empty. By p ↗ q, in the pattern Δ1[Δ2[Δ1, ∗]], there is a run

from state p′ in port 0 to state q′ in port ε that does not visit port 1, where
p →ε p′ and q′ →ε q. This run uses two states q1, q2 at the intermediate
junction nodes [ε] and [0]. These states satisfy p ↑ q1 ↗ q2 ↑ q:

[ε]

[0 ]
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The set R↗(p, q1) is empty, since it is included in R↗(p, q). Furthermore,
since p ↑ q1 holds, the set R↑(p, q1) must be nonempty, and consequently
R↖(p, q1) is nonempty by Proposition 5.6. Therefore we can choose r1 in
R↖(p, q1) which is not in R↗(p, q1). This means

p ↑ r1 r1 ↑ q1.

Similarly, there is some state r2 such that

q2 ↑ r2 r2 ↑ q.

Since q1 ↗ q2, we have r1 ↗ r2, and therefore item (b) holds.
• R↖(p, q) is empty. By reasoning as above, we have item (c).
• Finally, if R↗(p, q) ∩R↖(p, q) is empty, yet both R↗(p, q) and R↖(p, q) are

nonempty, then clearly item (a) holds.
The point of characterizing ↑ and ↓ is that these are the most basic types of

moves the automaton can make in a pattern expansion. Indeed, by Lemma 4.2, in
order to move from one junction node to another, the automaton needs to traverse
the Δ2 pattern. Since the pattern Δ2 can be seen as having Δ1 plugged into each of
its ports, each such traversal must employ one of the moves ↑ or ↓. But then we can
use Proposition 5.10 in order to uncover other possible moves of the automaton.

When put together, Proposition 5.10 and Lemmas 5.9 and 5.5 give us some idea
of how a tree-walking automaton can move upward within a pattern expansion: it
may get completely lost (by allowing a move from a node to any node above it, case 1
in Proposition 5.10), allow a DFS in some fixed direction and nothing else (cases 2
and 3), or, finally, do some DFSs coupled with moves in opposing directions (case 4).

6. Moves. In the previous section, we analyzed the way an automaton can move
through single instances of the basic patterns Δ0, Δ1, and Δ2. In this section, we
consider runs through larger objects built as compositions of Δ1 and Δ2 patterns,
i.e., pattern expansions. We are especially interested in the way the tree-walking
automaton can go from one junction leaf of such an expansion to another. Recall
Lemma 4.1, which states that any loop in a junction node can be replaced by the
→ε relation and hence swallowed by the γ relations. This means that any run between
two junction nodes in a pattern expansion can be assumed to be a nonlooping sequence
of steps consistent with the γ relation. In a tree, a nonlooping path is the shortest
possible path.

Note that all patterns considered in this section and the previous ones use only
the blank symbol. The a label will be introduced only in the final section, section 7.
From this perspective, the sections leading up to section 7 can be seen as an analysis
of runs that never see the a label.

6.1. Pattern paths and moves. Before proceeding with a classification of
possible moves, we introduce a more convenient syntax for describing runs between
junction nodes within a pattern expansion. Essentially, by Lemma 4.2, such a run
can be decomposed as a sequence of moves taken from γΔ2

. Moreover, by closure
properties of γΔ2 , the runs can be assumed to have a certain normal form.

A pattern path (path for short) is a word over the alphabet {ε, 0, 1} × {ε, 0, 1}.
A pattern path can be used to go from one junction node to another in a pattern
expansion in the following manner. An empty pattern path can stay in the same
junction node, while the pattern path π · (a, b) can go from [v] to [u · b] if its prefix π
can go from [v] to [u · a]. We write v →π w when π can go from [v] to [w].
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The →π relation can also be annotated with states of the automaton. Given
states p, q, and a pattern path π = (a1, b1) · · · (an, bn), we write p →π q if there are
states p = r1, . . . , rn+1 = q such that for all i = 1, . . . , n the tuple (ri, ai, ri+1, bi)
belongs to γΔ2 . In the special case of π = ε, we require p →ε q. Given two states p, q
and two nodes v, w, we write [p, v] →π [q, w] if both p →π q and v →π w hold.

A pattern path is called normalized if it is the shortest path between two junction
nodes. For having more understandable normalized paths, we use the following abbre-
viations: ↙ = (ε, 0), ↘ = (ε, 1), ↗ = (0, ε), ↖ = (1, ε), � = (0, 1), and � = (1, 0).
Let us define the following languages:

Up = (↗ + ↖)+, Down = (↙ + ↘)+,

Left = (Up + ε) � (Down + ε), Right = (Up + ε) � (Down + ε),

Side = ε + Left + Right.

The sets Up, Down, Left, Right, Side are called, respectively, the sets of upward,
downward, left, right, and sideways paths. A pattern path is normalized if and only
if it belongs to Up + Down + Side. Given nodes of a tree v and w, π(v, w) denotes
the unique normalized path such that v →π(v,w) w. As expected, for nodes v and w,
π(v, w) ∈ Up if and only if w is strictly above v; π(v, w) ∈ Down if and only if w is
strictly below v; π(v, w) ∈ Left if and only if w is to the left of v; and π(v, w) ∈ Right
if and only if w is to the right of v. A set of normalized pattern paths is called a
move, and we write vMw if π(v, w) ∈ M .

We will now show some results about the possible paths that the automaton can
use when going from one node to another; these were mentioned after Lemma 4.2.
We begin with the following lemma, which shows how paths correspond to runs of
the automaton, at least as far as junction nodes are concerned.

Lemma 6.1. The following are equivalent for nodes v, w in a blank tree t.
1. There is a run in Δt from [p, v] to [q, w].
2. [p, v] →π(v,w) [q, w] holds.
3. There is a run in Δt from [p, v] to [q, w] which visits only junction nodes [u]

such that v →π u for some prefix π of π(v, w).
Proof. This is a generalization of Lemma 4.2, and the same proof works: any loop

appearing in a run can be contracted using the →ε relation.
Since the normalized path connecting v and w does not depend on the tree t but

only on the nodes v, w, we obtain the following corollary.
Corollary 6.2. Let v, w be nodes of a blank tree t. Whether or not there is a

run from [p, v] to [q, w] in Δt depends only on π(v, w) and not on t.
The above corollary justifies the notation [p, v] → [q, w], where no particular path

or tree is mentioned; it is equivalent to p →π(v,w) q. We will use this notation often
in what follows.

Definition 7. For states p and q, we define U(p, q) to be the set of upward
paths π such that p →π q. Similarly, we define D(p, q), L(p, q), R(p, q), and S(p, q)
for downward, left, right, and sideways paths, respectively.

In particular, a direct consequence of this definition is that for two distinct nodes
v and w and states p and q, [p, v] → [q, w] if and only if

π(v, w) ∈ U(p, q) ∪D(p, q) ∪ S(p, q).

The following lemma will be used several times; it transfers some properties of γΔ2

to equalities on the sets U,D,L,R. Its meaning is natural, but the statement as well
as the proof are slightly clouded by the case of the normalized path ε.
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Lemma 6.3. The move R(p, q) is the union of (U(p, p′) + ε) � (D(q′, q) + ε) for
states p′, q′ satisfying p ↑ p′ � q′ ↓ q. A similar statement holds for L.

Proof. We do only the case of R. We begin with the right-to-left inclusion. Let
p′, q′ be states such that p ↑ p′ � q′ ↓ q, and let

π ∈ (U(p, p′) + ε) � (D(q′, q) + ε).

We can write π as π1 � π2 with π1 ∈ U(p, p′) + ε and π2 ∈ D(q′, q) + ε).
The first case is when both π1, π2 are empty and therefore π is �. By assumption,

we have p ↑ p′ � q′ ↓ q and hence p � q, by swallowing. Consequently p →π q and
π ∈ R(p, q). If neither of π1, π2 is empty, then π1 ∈ U(p, p′) and π2 ∈ D(q′, q), which
gives the desired result. The remaining cases where only one of π1 or π2 is empty are
treated by combining the two first cases.

We now treat the left-to-right inclusion. Let π be in R(p, q). By definition of
Right, π can be written as π1 � π2 with π1 ∈ Up + ε and π2 ∈ Down + ε. As above,
we first consider the case when π1, π2 are both empty. In this case, we have p � q.
But then, by looking at the path from port 0 to port 1 in the pattern Δ2[Δ1,Δ1]
which is equivalent to Δ2, we can find states p′, q′ such that p ↑ p′ � q′ ↓ q, which
completes the proof.

Assume now that both π1, π2 are nonempty. Let p′, q′ be the states such that
p →π1 p′ � q′ →π2

q. We need to show that p ↑ p′ and q′ ↓ q. But this follows from
transitivity of ↓, ↑ and the inclusions ↙,↘ ⊆ ↓ and ↖,↗ ⊆ ↑. The remaining cases
where only one of π1 or π2 is empty are treated by combining the two first cases.

Furthermore, there exists a strong link between the set of upward moves (and by
time symmetry, downward moves) and the behaviors of the automaton exhibited in
the previous section; this is the subject of the next lemma.

Lemma 6.4. If p q, then U(p, q) = Up. The analogous results hold for , ,
, , and , the corresponding moves being, respectively, Down, ↖+, ↗+, ↙+,

and ↘+.
Proof. We treat the case . If p q, then by Lemma 5.9, there is a state r such

that p r r q. This shows ↖+ ⊆ U(p, q). The opposite inclusion must also hold,
since otherwise we would get p ↗ q.

The next lemma gives other required facts about U(p, q) and S(p, q).
Lemma 6.5. If p ↑ q, then ↖+ ⊆ U(p, q) or ↗+ ⊆ U(p, q). If p ↗ q, then

↖∗↗ ⊆ U(p, q) or ↗+ ⊆ U(p, q). If p p′ � q, then ε ∈ S(p, q).
Proof. First statement: for some r, p ↑ r ↖ r ↑ q or p ↑ r ↗ r ↑ q by Lemma 5.8

and Proposition 5.6. Second statement: for some p′, p ↑ p′ ↗ q must hold; then use
the first statement. Third statement: by Lemmas 5.9 and 5.5, there exist r, r̄ such
that p ↑ r̄ � r ↓ r � r̄ ↑ p′. Hence (by swallowing) p � r ↓ r � r̄ ↑ p′ � q, and so
p →ε q, i.e., ε ∈ S(p, q).

As hinted by Proposition 5.10 and Lemmas 6.3, 6.4, and 6.5, there are not so
many ways that a sideways move can be done. The following eleven moves will play
a special role below.

Definition 8. An elementary move is any one of the eleven moves in Figure 6.1.

6.2. Move offsets. This section is devoted to moves that depend only on the
number of junction leaves between the source and destination, i.e., moves that do not
really depend on the structure of the tree.

We number the leaves of a tree t from left to right, starting from 0. Formally,
given a blank tree t and a leaf v of t, we denote by #t(v) the number of leaves in
the tree t that are lexicographically before v. For v and w leaves of t, we denote
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Stay = ε

= ↖∗
�↙∗ = ↗∗

�↘∗

= (↗ + ↖)∗�↙∗ = (↗ + ↖)∗�↘∗

= ↖∗
�(↙ + ↘)∗ = ↗∗

�(↙ + ↘)∗

= ε + (↗ + ↖)∗�↘∗ = ε + (↗ + ↖)∗�↙∗

= ε + ↗∗
�(↙ + ↘)∗ = ε + ↖∗

�(↙ + ↘)∗

Fig. 6.1. Elementary moves.

by #t(v, w) the offset from v to w within t, i.e., the difference #t(w) − #t(v). This
number is positive when v is to the left of w. If v or w is not a leaf of t, then #t(v, w)
is not defined.

Definition 9. A move offset of two states p, q is an integer i such that for every
tree t and leaves v and w of t, #t(v, w) = i implies [p, v] → [q, w]. We write moff(p, q)
for the set of move offsets of p, q. We say that p, q admit a shift if moff(p, q) contains
two successive integers from {−2,−1, 0, 1, 2}.

The next lemma shows how move offsets can be described in terms of paths.

Lemma 6.6. For every pair of states p, q,

0 ∈ moff(p, q) iff ε ∈ S(p, q),

1 ∈ moff(p, q) iff ↖∗
�↙∗ ⊆ S(p, q),

2 ∈ moff(p, q) iff ↖∗↗↖∗
�↙∗ + ↖∗

�↙∗↘↙∗ ⊆ S(p, q),

−1 ∈ moff(p, q) iff ↗∗
�↘∗ ⊆ S(p, q),

−2 ∈ moff(p, q) iff ↗∗↖↗∗
�↘∗ + ↗∗

�↘∗↙↘∗ ⊆ S(p, q).

Proof. The case of 0 follows straight from the definition: if #t(v, w) = 0, then
v = w and therefore π(v, w) = ε (and vice versa). The remaining cases follow by listing
the paths that can connect nodes separated by 1, 2,−1,−2 leaves, respectively.

In particular, directly from the definition of elementary moves, we deduce the
following corollary.

Corollary 6.7. Every elementary move has an offset among −1, 0, 1.

A typical example of a move offset of 1 is the DFS.

Lemma 6.8. If (p, p̄) is a left-to-right DFS, then 1 is a move offset of p̄, p. If
(p, p̄) is a right-to-left DFS, then −1 is a move offset of p̄, p.

Proof. If (p, p̄) is a left-to-right DFS, then p̄ ↖ p̄ � p ↙ p holds. Thus the
move S(p̄, p) contains ↖∗

�↙∗, and the move offset 1 follows by Lemma 6.6. The
right-to-left case is the same.

The following lemma gathers a number of sufficient conditions for move offsets.

Lemma 6.9. For all states p̄, r̄, and q the following hold:

1. If p̄ p̄ � q, then 0 is a move offset of p̄, q.
2. If p̄ p̄ � q, then 1 is a move offset of p̄, q.
3. If p̄ p̄ ↗ r̄ r̄ � q, then both 1 and 2 are move offsets of p̄, q.
4. If p̄ p̄ ↖ r̄ r̄ � q, then both −1 and 0 are move offsets of p̄, q.
5. If p̄ p̄ � q q, then both −1 and 0 are move offsets of p̄, q.

Proof.

1. The proof is immediate by Lemmas 6.5 and 6.6.
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2. By Lemma 5.5, there is a state p such that (p, p̄) is a left-to-right DFS. By
Lemma 6.8, p̄, p has offset 1. From p ↙ p � p̄ � q, we have p ↓ q. Using
Lemma 6.6, it follows by swallowing that p̄, q also has offset 1.

3. The move offset 1 follows from the previous case, since p̄ p̄ � q. By
Lemma 6.6, the move offset 2 will follow once we show that S(p̄, q) contains
both

↖∗↗↖∗
�↙∗ and ↖∗

�↙∗↘↙∗.

By Lemma 5.5, there are states p, r such that (p, p̄) and (r, r̄) are left-to-right
DFSs. By r ↙ r � r̄ � q, we obtain r ↓ q. Then by

p̄ ↖ p̄ ↗ r̄ ↖ r̄ � r ↙ r ↓ q

we obtain that S(p̄, q) contains ↖∗↗↖∗
�↙∗.

It remains to show that S(p̄, q) contains ↖∗
�↙∗↘↙∗. This will follow once

we prove p ↘ r, by

p̄ ↖ p̄ � p ↙ p ↘ r ↙ r ↓ q.

It thus remains to show p ↘ r. By p ↙ p � p̄ ↗ r̄, we get p →ε r̄. Finally, if
we consider the path in Δ2[Δ1, ∗] witnessed by p ↙ p →ε r̄ � r, we get the
desired p ↘ r.

4. By item 1, there is a move offset of 0.
By Lemma 5.5, there are states p, r such that both (p, p̄) and (r, r̄) are right-to-
left DFSs. Using the space-symmetric variant of the proof of p ↘ r in item 3,
we obtain p ↙ r. Now, by p ↙ r � r̄ � q, we have p ↓ q. Consequently
p̄ p̄ � p ↓ q, and, applying the space-symmetric version of item 2, we obtain
an offset of −1 for p̄, p.

5. The offset 0 follows from item 1. By Lemma 5.5, there are states p, q̄ such
that both (p, p̄) and (q, q̄) are right-to-left DFSs.
Let us show that p̄ ↑ q̄. For this, we trace the run

p̄ � p ↘ p � p̄ � p � p̄ � q � q̄ � q � q̄ ↗ q̄ ↗ q̄

that goes from state p̄ in port 0 to state q̄ in port ε of the following pattern,
which is equivalent to Δ1:

Now by p̄ ↑ q̄ ↗ q̄ � q ↘ q, we obtain that ↗∗
�↘∗ ⊆ S(p̄, q). By

Lemma 6.6, we obtain offset −1.

6.3. Classification of moves. In this section we state and prove Proposi-
tion 6.10, which says that if S(p, q) is nonempty, then either it is a union of some
of the eleven elementary moves, or there is a shift. This separation of cases is at the
core of the argumentation of section 7.

Proposition 6.10. If S(p, q) is nonempty, then p, q have a move offset in
{−1, 0, 1}. Furthermore, either p, q admit a shift or S(p, q) is a union of elemen-
tary moves.
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Proof. By Lemma 6.3, the move S(p, q) is a finite union of sets of the form {ε},
which is an elementary move, or

(U(p, p′) + ε) � (D(q′, q) + ε), where p′, q′ satisfy p ↑ p′ � q′ ↓ q, or

(U(p, p′) + ε) � (D(q′, q) + ε), where p′, q′ satisfy p ↑ p′ � q′ ↓ q.

Letting M ⊆ S(p, q) be a move of one of those forms, we prove that either S(p, q)
contains a shift or there is an elementary move E such that M ⊆ E ⊆ S(p, q). If this
holds for all such moves M , we directly obtain the statement of the proposition, using
Corollary 6.7 for the offset of elementary moves.

By symmetry, we consider only the case M = (U(p, p′) + ε) � (D(q′, q) + ε). We
now apply Proposition 5.10 to p ↑ p′. This proposition distinguishes six cases, namely,
, , , (a), (b), and (c). Similarly, we can do the time-reversed reasoning for q′ ↓ q

and also consider six cases.
If we have (b) or (c) for p ↑ p′, then by items 3 and 4 of Lemma 6.9, respectively,

we get a shift. In the case of (a), we get a shift by using items 1 and 2. By the
time-space-reverse variant of Lemma 6.9, the same happens if (a), (b), or (c) holds
for q′ ↓ q.

Only the other cases remain. There are nine possibilities:
• If p p′ and q′ q, we get M = by Lemma 6.4. Similarly, if p p′ and

q′ q, we get M = , and when p p′ and q′ q, we have M = .
• If p p′ and q′ q, we have M ⊆ by Lemma 6.4. Furthermore, using

Lemmas 6.4 and 6.5, we get ⊆ S(p, q). Similarly, if p p′ and q′ q, we
obtain M ⊆ ⊆ S(p, q).

• If p p′ and q′ q, then p, q admit a shift. Indeed, 1 is a move offset of p, q: by
Lemma 5.9, p ↑ p′′ p′′ ↑ p′, and item 2 of Lemma 6.9 gives offset 1. Offset 0
is obtained by the time-space-reverse variant of Lemma 6.5 (i.e., if p̄ � q′ q,
then ε ∈ S(p, q)). The results are similar for p p′ and q′ q.

• If p p′ and q′ q, then p, q admit a shift by item 5 of Lemma 6.9.
• If p p′ and q′ q, then p, q clearly admit a shift; 1 and 2 are move offsets.

6.4. Right-skipping moves. The result of this section concerns right-skipping
moves. A move is called right-skipping if it contains an element of

Right \ .

A right-skipping move can go to the right in a pattern while omitting (skipping) the
junction leaf immediately to the right:

?

We say that states p, q are right-skipping if the move R(p, q) is right-skipping. A
left-skipping move is defined in the same fashion.

Lemma 6.11. Let p, q be states with a maximal move offset k. Let u, v be leaves
of a tree t, with #t(u, v) > k. If [p, u] → [q, v], then p, q are right-skipping.

Proof. Note that if the offset k can be arbitrarily large, i.e., there is no maximal
offset k, then p, q are right-skipping straight from the definition, thanks to any move
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offset larger than 1. By the first clause of Proposition 6.10, k ≥ −1, and so #t(u, v)
is at least 0. Furthermore, it cannot be 0, since otherwise we would have p →ε q and
therefore 0 ∈ moff(p, q); this would give k ≥ 0, a contradiction with #t(u, v) > k.

If #t(u, v) is at least 2, then p, q are right-skipping by definition; the remaining
case is 1. The path π(u, v) witnesses p � q and, consequently, the existence of p′, q′

such that p ↑ p′ � q′ ↓ q. By Proposition 5.6, either p ↖ p′ or p ↗ p′ must hold.
If p ↗ p′, then ↗� ∈ R(p, q) is a witness for p, q being right-skipping. Otherwise,
p p′ � q. By Lemma 5.9 and item 2 of Lemma 6.9, p, q has offset 1, which gives
k ≥ 1; a contradiction with #t(u, v) > k.

7. The rotation. We have now gathered enough information about runs of the
automaton that never see the label a. In this section we consider runs that do see a,
and conclude the proof of Theorem 2. We will show that the tree-walking automaton A
cannot detect a well-placed rotation in a large balanced tree.

x x

00 01

1 00

01 1

Fig. 7.1. Rotating at node x.

We proceed as follows. We start with a blank balanced binary tree T of large
even depth. Clearly all leaves of T are at even depth, and therefore A must accept
the tree Δa

T . We then choose a pivot node x in T and perform a rotation at that
node. Rotation is the operation depicted in Figure 7.1; it moves the subtrees rooted
in x00, x01, and x1 to the new positions x0, x10, and x11. One can easily see that the
resulting tree T ′ has some leaves at odd depth, and hence A should not accept Δa

T ′ .
We will, however, show that, for a carefully chosen pivot, A does accept this tree,
thereby completing the proof of Theorem 2.

Proposition 7.1. The tree Δa
T ′ is accepted by A.

First we describe how to properly choose the height of the tree T and the pivot
in it. The remainder of the paper is then devoted to showing Proposition 7.1.

7.1. The pivot. The goal of this section is to construct a tree T , an accepting
run of A over Δa

T , and a node x of T (the pivot), such that the properties of Defi-
nition 10 are satisfied. Essentially, these properties say that the tree is balanced and
large and the path leading to the pivot contains a zigzag. Furthermore, some unde-
sirable parts of the accepting run do not use nodes below the pivot. These properties
will be used in the remainder of the paper in order to prove that doing a rotation in
the pivot x on the tree T gives a tree T ′ such that Δa

T ′ is accepted by A. We begin
by defining the “undesirable” parts of the run. After that, we state Definition 10 and
then show that the tree and pivot can indeed be found, in Lemma 7.3.

Let t be a blank tree. Recall the definitions of junction and leaf configurations
from section 4.2. By distinguishing all the configurations whose node is either a
junction leaf or the root of Δa

t , every accepting run in Δa
t can be decomposed into a

sequence of the following form:
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(7.1) (q1, v1), . . . , (qn, vn),

where each vi (i = 1, . . . , n) is either the root ε or [ui] for some leaf ui of t, and in
between two such configurations, no junction leaf or the root is visited. In this case
the run linking (qi, vi) to (qi+1, vi+1) is either

(a) a run visiting at least once the root of Δa
t (and no a-labeled leaf of Δa

t );
(b) a loop inside the Δ1[Δa] subtree rooted in vi, which is equivalent to Δa (hence

qi �a qi+1); or
(c) a run from a junction leaf to another junction leaf in the pattern Δt (hence by

Lemma 6.1, [qi, ui] → [qi+1, ui+1] holds, where vi = [ui] and vi+1 = [ui+1]).
Such a sequence is called a rooted leaf run in Δa

t . An unrooted leaf run is one
that never uses a step of the form (a). By shortcutting each part of the run starting
and ending in the root with the same state, we can safely assume that every rooted
leaf run uses at most 2|Q| steps of the form (a); hence the greater part of a rooted
leaf run is unrooted. Since an unrooted leaf run uses only leaf configurations, it can
be written as [q1, u1], . . . , [qn, un].

For junction configurations [p, v] and [q, w], we write [p, v] ⇒t [q, w] if in the
tree Δa

t there is a run from [p, v] to [q, w] that does not visit the root. Note that
when v, w are leaves, this means that there is an unrooted leaf run in Δa

t from [p, v]
to [q, w]. As opposed to the relation [p, v] → [q, w], this run may depend on the tree t
and not only on the nodes v and w.

We say that one state q is leaf reachable from another state p if they can be
connected by an unrooted leaf run in some tree; i.e., [p, v] ⇒t [q, w] for some tree t
and leaves v, w. Equivalently, q is leaf reachable from p if there exist p = p1, . . . , pn = q
such that for every i = 1, . . . , n− 1 either S(pi, pi+1) is nonempty (which corresponds
to case (c)) or pi �a pi+1 holds (corresponding to case (b); recall the definition of �a

from Figure 5.1). (The right-to-left part of this equivalence is a consequence of the
existence of a move offset in {−1, 0, 1} shown in Proposition 6.10 and is not a priori
obvious). A component of the automaton is a maximal set of pairwise leaf reachable
states; in other words, it is a strongly connected component of the directed graph
with Q as nodes and an edge from p to q if and only if S(p, q) is nonempty or p �a q.

Let us consider a rooted leaf run ρ as in (7.1), which witnesses the acceptance
of Δa

t by A. The main point in choosing the pivot is to restrict our attention to
fragments of ρ that are unrooted leaf runs and only use states from one component.
We say the run changes components below a node y of t if it contains two successive leaf
configurations (qi, vi), (qi+1, vi+1) such that qi and qi+1 are in different components
and at least one of vi, vi+1 is below [y]. The run is rooted below y if there is some i
such that vi = ε and either vi−1 or vi+1 exists and is below [y].

Definition 10. We define the following properties for a node x in a blank
balanced tree t with respect to a rooted leaf run of A in Δa

t :
1. the subtrees rooted in x and the children of x are log2(|Q|)-fractal (see below);
2. the subtree of x has depth larger than 4 + |Q| + 2 log2(|Q|);
3. the node x is below the node 01010101;
4. the run does not change components below x;
5. the run is not rooted below x.

Note that since the tree t is balanced, the number of leaves below a node v depends
only on its depth. Then let v be a node of t, whose depth |v| + 1 is at most |x| + 2.
From condition 2, it follows that the number of leaves in the subtree of v exceeds
all the following thresholds (the constants D,E defined below will be used in the
subsequent proofs):
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(7.2) |Q|, D = |Q|(|Q| + 1), E = 3D + |Q|.

We will refer to the above property later in the paper.
We will now proceed to show that such a run and a node (called the pivot) can

be found (Lemma 7.3) as long as t is a sufficiently large balanced tree of even depth.
Before we do so, however, we need to define what a fractal tree is.

Within a tree t, we distinguish five characteristic types of nodes: (1) the root,
(2) the leftmost leaf, (3) the rightmost leaf, (4) the remaining leaves, and—for the
sake of completeness—(5) the remaining nodes. We say a tree t′ simulates a tree t
if for every two junction configurations in t that satisfy [p, v] ⇒t [q, w] one can find
two configurations satisfying [p, v′] ⇒t′ [q, w′] such that v and v′ have the same
characteristic type, as well as w and w′. Given a natural number m, a tree is called
m-fractal if it contains a proper subtree that simulates it and has depth larger than m.

Lemma 7.2. For every natural number m, all balanced binary trees of sufficiently
large depth are m-fractal.

Proof. For a tree t and states p, q, we can calculate the characteristic types of
nodes v, w satisfying [p, v] ⇒t [q, w]. This information is sufficient to see whether one
tree simulates another. Moreover, it can be calculated by a deterministic bottom-
up finite tree automaton. In the case of a balanced binary tree, this information is
a (regular) property of its depth and is thus ultimately periodic. This means that
there exist constants N and k such that every balanced blank tree of depth n ≥ N
is simulated by the balanced blank tree of depth n− k. Hence every balanced tree of
depth at least max{m + k,N} is m-fractal.

Lemma 7.3. There exist a blank balanced binary tree T , an accepting run ρ of A
in Δa

T , and a pivot x such that x satisfies properties 1–5 of Definition 10 with respect
to ρ.

Proof. Let N be more than the minimum depth of balanced tree obtained from
Lemma 7.2 for m = log2(|Q|) and also larger than the depth stated in condition 2
of Definition 10. Let K be more than log2(4|Q|) + 1. Finally, let T be a balanced
blank tree of even depth larger than N + K + 8. The tree Δa

T is accepted by A by
hypothesis on A.

Consider now an accepting run and its representation as in (7.1),

(q1, v1), . . . , (qn, vn),

where only the root and junction leaf configurations are displayed. We assume that
in this run, the root of Δa

T is seen at most |Q| times. If this is not the case, some
state appears twice in the root, and hence a configuration is seen twice in the run;
one can then shortcut the corresponding part of the run.

Let Vroot be all those junction leaves vi such that at least one of vi−1, vi+1 is the
root ε. One can easily see that the run is rooted below a node y if and only if [y] is
above some node in Vroot. Likewise, let Vcc be all those junction leaves vi such that
the state qi is in a component other than either qi−1 or qi+1 (or both). Again, the
run changes component below a node y if and only if [y] is above some node in Vcc.
Combining the above, a node x satisfies properties 4 and 5 from Definition 10 if and
only if x is not above some node in one of Vroot, Vcc. By assumption on the run
not visiting the root more than |Q| times, the sets Vroot, Vcc have together at most
4|Q| nodes.

Let us count the number of nodes at depth K + 8 in T that are below 01010101.
There are 2K−1 such nodes, i.e., more than 4|Q| by construction of K. In particular,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWA DO NOT RECOGNIZE ALL REGULAR LANGUAGES 687

there is a node x at depth K + 8 that satisfies conditions 3, 4, and 5. Furthermore,
since the whole tree has depth at least N + K + 8, the subtree of x has depth at
least N , and therefore x satisfies conditions 1 and 2.

Detection of the rotation. Throughout the remainder of the paper, the tree T ,
the run ρ, and the pivot x are fixed according to Lemma 7.3. Let T ′ be the tree
obtained from T by doing a rotation in the pivot x; this tree clearly contains leaves
at odd depth. Our objective is to show that Δa

T ′ is accepted by A. For this, we have
to show that the run can in some sense be replicated after the rotation. We will use
properties 4 and 5 from Definition 10 to show that only unrooted leaf runs that do
not change components need be considered.

We say that a component Γ ⊆ Q of the automaton A cannot detect the rotation
if for every two leaf configurations [p, v], [q, w] with p, q in Γ and v, w not below the
pivot

(7.3) [p, v] ⇒T [q, w] implies [p, v] ⇒T ′ [q, w].

Observe that it makes sense to speak about the configurations [p, v] and [q, w] in the
tree T ′ since the leaves v and w are not below the pivot and hence are not affected
by the rotation.

Consequence for Proposition 7.1. Let us show that, under the assumption that
no component can detect the rotation, we have Proposition 7.1.

Consider the run ρ and its representation as in (7.1):

(q1, v1), . . . , (qn, vn).

Recall how we classified each of the runs linking (qi, vi) to (qi+1, vi+1), for i =
1, . . . , n − 1, according to their form, (a), (b), or (c). Also define ui to be the node
of T such that vi = [ui], when possible, for i = 1, . . . , n.

We claim the following: for i < j in {1, . . . , n} such that both vi and vj are not
below [x], there is a run of the automaton A from (qi, vi) to (qj , vj) in Δa

T ′ . Since
neither v1 = ε nor vn = ε is below [x], our claim yields a run in Δa

T ′ that goes from
(q1, ε) to (qn, ε). Since the original run from (q1, ε) to (qn, ε) in Δa

T was accepting, we
know that q1 is initial and qn is final, and therefore the tree Δa

T ′ is accepted by the
automaton.

The proof of the claim is by induction on j− i. The induction step is obvious and
follows by concatenating runs. The nontrivial case is the base case of the induction,
when for every k with i < k < j the node vk is below [x]. We now prove the claim for
this case.

Consider first the case when i + 1 = j. We now look at the form of the subrun
that goes from (qi, vi) to (qi+1, vi+1). If this subrun is of the form (b), it can be
directly replicated on Δa

T ′ without change. If the subrun from (qi, vi) to (qi+1, vi+1)
is of the form (c), then we use Corollary 6.2, which shows that a similar run can
be used in Δa

T ′ from configuration (qi, vi) to (qi+1, vi+1). The last remaining case
is when the subrun from (qi, vi) to (qi+1, vi+1) is of the form (a), and in particular
either vi = ε, or vj = ε, or both hold. If vi = ε, but vj �= ε, we decompose the run
from (qi, ε) to (qj , vj) into a run from (qi, ε) to [q′, ε], which does not visit more than
once the nodes ε and [ε], followed by a run from [q′, ε] to [qj , uj ], which does not visit
ε or a junction leaf other than [uj ]. This second piece of run can be reused in Δa

T ′

according to Corollary 6.2. Hence there is a run in Δa
T ′ from (qi, vi) to (qj , vj). The

case vi �= ε and vj = ε is obtained by time symmetry. Finally, when vi = vj = ε,
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either the run does not visit [ε] and can be directly reused in Δa
T ′ , or it visits [ε]. In

this latter case, let q′ be the first and q′′ be the last state assumed by the run when
visiting [ε]. The piece of run between [q′, ε] and [q′′, ε] does not visit any junction
leaf, and consequently by Lemma 4.1, there is a similar run which does not visit any
junction node other than [ε]. This run can be reused in Δa

T ′ to obtain a run from
(qi, vi) to (qj , vj).

Otherwise, we have i + 1 < j. For all k with i < k < j, the node vk is below [x],
which together with condition 5 of Definition 10 gives that no subruns of form (a)
happen between (qi, vi) and (qj , vj). Consequently, all the nodes vk are junction
leaves, and the run from (qi, vi) to (qj , vj) is an unrooted leaf run:

[qi, ui] ⇒T [qj , uj ].

Furthermore, by condition 4 of Definition 10, the states qi and qj belong to the same
component Γ of the automaton. Also, by hypothesis on i and j, neither ui nor uj is
below x. It follows that we can apply our assumption that no component can detect
the rotation, and get a run corresponding to

[qi, ui] ⇒T ′ [qj , uj ].

This completes the proof of the claim and, consequently, of Proposition 7.1. What
remains to be done is to establish that no component of the automaton can detect
the rotation. The remainder of this paper is dedicated to establishing this.

Using Proposition 6.10, we divide all components into two categories: components
with a shift, i.e., containing two states that admit a shift, and components without
a shift. Proposition 7.1 is then proved in sections 7.2 and 7.3 for each of the two
categories.

7.2. Components with a shift cannot detect the rotation. In this section
we fix a component Γ with a shift and prove that it cannot detect the rotation. In
order to do this, we extend the definition of move offsets to run offsets, where more
than one move can be used. The idea is that the shift in the component can be
exploited to allow the automaton to move around the tree in an almost arbitrary
fashion, independently of the structure of T .

A run offset between state p and state q is defined similarly to a move offset.
Definition 11. Given a natural number m ≥ 0 called the safety margin, an

m-run offset of states p, q is an integer i such that [p, v] ⇒t [q, w] holds for every two
leaves v, w of a tree t where #t(v, w) = i and v, w both have at least m leaves to their
left and right. We write roffm(p, q) for the set of m-run offsets of p, q.

We remark here, slightly ahead of time, that a consequence of x being below
01010101 is that all nodes below the pivot, and even some nodes not below the pivot,
have at least m leaves to their left and right for fairly large values of m. This means
that those nodes are suitable for using run offsets.

The differences between move offsets and run offsets are that (1) we replace →
with ⇒t (which depends on t and can read the label a) and (2) the leaves v, w
must have a “safety margin” of at least m leaves to their left and to their right; see
Figure 7.2.

We now list some basic properties of roff, which hold for any given states p, q, r.
First, moff(p, q) is included in roff0(p, q). Furthermore, if p �a q holds, then 0 belongs
to roff0(p, q). Also, if both i, j ≤ 0 or both i, j ≥ 0, then

i ∈ roffm(p, q), j ∈ roffm(q, r) ⇒ i + j ∈ roffm(p, r).
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mm

v w

Fig. 7.2. An m-run offset.

Finally, if ij ≤ 0 (i.e., if i, j are of opposite sign), then

i ∈ roffm(p, q), j ∈ roffm(q, r) ⇒ i + j ∈ roffm+min(|i|,|j|)(p, r).

In particular, if j ∈ {−1, 0, 1}, then i + j ∈ roffm+1(p, r).
A consequence of these properties, together with Proposition 6.10, is given in the

following lemma.
Lemma 7.4. For every component Γ and states p, q in Γ, roff |Q|−2(p, q) is non-

empty and contains a value k with |k| < |Q|.
Proof. For p = q, we naturally have 0 ∈ roff0(p, q), and hence 0 ∈ roff |Q|−2(p, q).

Now assume p �= q. Since p and q are in the same component, there exists a sequence
of states p = r1, . . . , rn = q such that for all i = 1, . . . , n − 1 either ri �a ri+1 holds
or the move S(ri, ri+1) is nonempty. Without loss of generality, we assume that no
state is seen twice in this sequence, and therefore 2 ≤ n ≤ |Q|.

By induction on i = 2, . . . , n, we will show that roffi−2(r1, ri) contains a value k
with |k| < i. For i = n ≤ |Q|, the statement of the lemma follows. For i = 2, using
the properties described above, if r1 �a r2, then 0 ∈ roff0(r1, r2), and if S(r1, r2) is
nonempty, then moff(r1, r2) contains an offset j ∈ {−1, 0, 1} by Proposition 6.10, and
hence j ∈ roff0(r1, r2). For i > 2, by the induction hypothesis, the set roffi−3(r1, ri−1)
contains a value k with |k| < i − 1. If ri−1 �a ri holds, then roffi−3(r1, ri) also
contains k, and therefore so does roffi−2(r1, ri). On the other hand, if S(ri−1, ri) is
nonempty, then moff(ri−1, ri) contains an offset j ∈ {−1, 0, 1} by Proposition 6.10.
In particular, the offset j belongs to roff0(ri−1, ri). Using the properties described
above, we obtain that k + j belongs to roffi−2(r1, ri). This concludes the induction
step, since |k + j| < i.

For a safety margin m and a natural number d called the threshold, a pair of states
p, q is called an (m, d)-right-teleport if roffm(p, q) contains all integers not smaller
than d. An (m, d)-left-teleport is when roffm(p, q) contains all the integers not larger
than −d. An m-full-teleport corresponds to roffm(p, q) containing all integers. Ob-
serve that if p, q is an (m, d)-right-teleport and q, r is an (m, d)-left-teleport, then p, r
is an (m + d)-full-teleport.

Recall the constant D = |Q|(|Q| + 1) defined after Definition 10.
Lemma 7.5. If a component Γ contains a shift, either all pairs of states in Γ are

(2|Q|, D)-right-teleports or all are (2|Q|, D)-left-teleports.
Proof. Let q1, q2 be states in the component Γ that admit a shift, i.e., have two

consecutive move offsets i, i + 1 ∈ {−2,−1, 0, 1, 2}. By adding i, i + 1 to the offset
obtained by applying Lemma 7.4 to the pair q2, q1, we infer that q1, q1 admits two
consecutive |Q|-run offsets k and k + 1 with |k|, |k + 1| ≤ |Q| + 1.

Without loss of generality, let us assume that 0 ≤ k ≤ |Q|. Let

m ≥ |Q|(|Q| − 1) ≥ k(k − 1).
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We will show that m belongs to roff |Q|(q1, q1). For k = 0, we have k + 1 = 1 ∈
roff |Q|(q1, q1) and hence, using this run offset m times, m ∈ roff |Q|(q1, q1). For k ≥ 1,
the number m can be written as αk + β with β ∈ {0, . . . , k − 1}. In particular,

m = (α− β)k + β(k + 1).

Let us remark that since m ≥ k(k − 1), we have that α ≥ k − 1 and consequently
α − β ≥ 0. Hence by using α − β times the run offset k, and β times the run offset
k + 1, one obtains

m ∈ roff |Q|(q1, q1).

This proves that q1, q1 is a (|Q|, |Q|(|Q| − 1))-right-teleport.
Once one pair of states q1, q1 is a right-teleport, the same can be shown for all

other state pairs in the component Γ. Indeed, we will show that any two states p, q in Γ
are a (2|Q|, |Q|(|Q|+ 1))-right-teleport, which completes the proof of the lemma. We
need to show that the automaton can go from [p, v] to [q, w]. First, using Lemma 7.4,
the automaton can go from [p, v] to a configuration of the form [q1, u1], where u1 is
a leaf separated from v by at most |Q| leaves (note that u1 may be to the left or to
the right of v). In the same way, there is a leaf u2, separated from w by at most
|Q| leaves, such that the automaton can go from [q1, u2] to [q, w]. If the leaves v, w
have safety margins of 2|Q|, then the leaves u1, u2 have safety margins of at least |Q|.
Furthermore, if w is at least

|Q|(|Q| − 1) + 2|Q| = |Q|(|Q| + 1) = D

leaves to the right of v, then u2 is at least |Q|(|Q| − 1) leaves to the right of u1.
Therefore the (|Q|, |Q|(|Q|−1))-right-teleport q1, q1 can be used to go from [q1, u1] to
[q1, u2]. This completes the proof that p, q is a (2|Q|, D)-right-teleport.

The left-teleport is obtained in the case when k is negative.
For the remainder of this section (section 7.2), we assume that the second case in

the above lemma holds, i.e., that all pairs of states are (2|Q|, D)-left-teleports. The
case of right-teleports is symmetric. We now proceed to show that the component Γ
cannot detect the rotation, i.e., that the implication (7.3) holds for any two leaves
v, w not below the pivot and any two states p, q of the component Γ.

Consider all the leaf configurations of the unrooted leaf run from [p, v] to [q, w]:

(7.4) [p, v] = [r0, u0] ⇒T [r1, u1] ⇒T · · · ⇒T [rn, un] ⇒T [rn+1, un+1] = [q, w].

Without loss of generality we can assume that all the leaves u1, . . . , un are below the
pivot; the other parts of the run can be easily replicated in T ′ (as explained at the end
of section 7.1). Note that since Γ is a component, all the states r0, . . . , rn+1 belong
to Γ.

We will do a case analysis. We say the leaf run from [p, v] to [q, w] satisfies
property (*) if for some 0 ≤ i < j ≤ n+1 the leaf uj is at least |Q| leaves to the right
of ui, i.e., #T (ui, uj) ≥ |Q|. We do the proof first for leaf runs that do not satisfy
this property and then for those that do.

7.2.1. Leaf runs not satisfying (*). Recall that we assume that Γ is a compo-
nent such that every pair of states in it is a left-teleport. We make a case distinction
depending on the relative position of v and w with respect to the pivot.
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If v is to the left of the pivot and w is to its right, then all the leaves below the
pivot separate v from w. By (7.2), there are more than |Q| of these leaves, which
contradicts our assumption on property (*) failing.

Consider now the case when v is to the right of the pivot and w is to the left.
If v has more than 2|Q| leaves to its right and w has more than 2|Q| leaves to its
left, we can use the (2|Q|, D)-left-teleport and go from [p, v] to [q, w] independently
of the rotation, since there are at least D leaves below the pivot x, thanks to (7.2).
Let us assume now that v has less than 2|Q| leaves to its right and w has less than
2|Q| leaves to its left. By (7.2), node 11 has more than 2|Q| leaves in its subtree. In
particular, if there are less than 2|Q| leaves to the right of v, then v must be below 11.
Since u1 is below the pivot x, hence below 01, the path going from [p, v] to [r1, u1] is
of the form π ↖�↘ π′ ∈ S(p, r1). It follows that π � π′ also belongs to S(p, r1), by
swallowing. Hence, the automaton can go from [p, v] to [r1, v

′] for some v′ below 10.
In the same way, if w has less than 2|Q| leaves to its left, one shows that there exists a
leaf w′ below 001 such that the automaton can go in one move from [rn, w

′] to [q, w].
We are in the situation where v′ has more than 2|Q| leaves to its right, w′ has more
than 2|Q| leaves to its left, and there are more than D leaves between w′ and v′.
Now we can use the (2|Q|, D)-left-teleport to go from [r1, v

′] to [rn, w
′]. Furthermore,

since v′, w′ are not below the pivot and the teleport is used to jump over the leaves
below the pivot, the resulting run cannot detect the rotation. The other cases are a
combination of the two previous ones.

x x

Fig. 7.3. The bijection f .

Next we consider the case for which both v and w are to the right of the pivot.
Since condition (*) is not satisfied, all leaves u1, . . . , un are at most |Q| leaves away
from w. In particular all these leaves are below x1 since the subtree rooted in x1
contains at least |Q| leaves by (7.2). Let f be the unique bijection between the leaves
of T and the leaves of T ′ that preserves the leaf numbering (i.e., #T (v) = #T ′(f(v));
see Figure 7.3). Note that f is the identity function on leaves not below the pivot; in
particular f(v) = v and f(w) = w. We claim that the unrooted leaf run from [p, v] to
[q, w] can be replicated in the tree T ′ as follows:

[p, v] ⇒T ′ [r1, f(u1)] ⇒T ′ · · · ⇒T ′ [rn, f(un)] ⇒T ′ [q, w].

Since all leaves u1, . . . , un are located below x1, the path connecting f(ui) to f(ui+1)
is identical to the one connecting ui to ui+1 for i = 1, . . . , n − 1. It follows that the
run from [r1, f(u1)] to [rn, f(un)] is valid in T ′. Only the first and last steps remain
to be considered. We do only the first one, the other being time-symmetric. Consider
the first step in the leaf run, when the automaton goes from [p, v] to [r1, u1]. Since
v is to the right of the pivot and u1 is below the pivot, the path from v to u1 is of the
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form

π � π1π2 with π ∈ {↖,↗}∗ and π1, π2 ∈ {↙,↘}∗.

Here π1 is chosen so that π � π1 leads from v to the pivot, while π2 leads from the
pivot to u1. Since u1 is at a distance at most |Q| from v, it is separated by at most
|Q| leaves from the rightmost leaf below the pivot. Therefore, the only left turns ↙
in π2 happen in its last log2(|Q|) letters. It follows from condition 2 of Definition 10
that π2 has a prefix ↘k with k ≥ |Q|. Hence some state r has to be used twice in the
prefix. Since ↘ is transitive, we deduce that

π � π1 ↘ π2

also belongs to the move S(p, r1). But this path is the one linking v to f(u1) in T ′,
proving that [p, v] ⇒T ′ [r1, f(u1)].

The last remaining case is when both v and w are to the left of the pivot. This
time we show that from a run of the form π � π1 ↙ π2 one can deduce a run of the
form π � π1π2, which can be used after the rotation. This case is, in fact, simpler
since Definition 10 need not be invoked, but rather swallowing is used.

7.2.2. Leaf runs satisfying (*). In this case we will show that the component Γ
contains a right-skipping move (or a right-teleport). After combining this with the
left-teleports from our assumption, we will show that any two leaf configurations with
states from Γ and nodes below the pivot can be reached one from the other, which
implies that Γ cannot detect the rotation. For this, we will use the assumption that
the pivot is below 01010101.

Recall the constant E = 3D + |Q| defined after Definition 10.
Lemma 7.6. Either all pairs of states in Γ are E-full-teleports, or some states

r, r′ in Γ are right-skipping.
Proof. Recall that we are analyzing a run as in (7.4). For i = 0, . . . , n, let ki be

the offset #T (ui, ui+1). If some ki exceeds 1, the corresponding move R(ri, ri+1) is
by definition right-skipping and we are done. Furthermore, if some ki exceeds the
maximal move offset of ri, ri+1 (if that exists), then the corresponding move is right-
skipping by Lemma 6.11. We assume that neither case happens.

Since (*) is satisfied, there are i < j such that #T (ui, uj) ≥ |Q|. We will inspect
the run from ui to uj and find in it a state used twice, the first configuration involved
being to the left of the second one. Since ki, . . . , kj−1 ≤ 1, we can assume that
#T (ui, uj) is exactly |Q|. Furthermore, if we choose i, j so that j − i is minimal, all
the leaves ui+1, . . . , uj−1 are to the right of ui and to the left of uj . Since, without
loss of generality, we can assume that no leaf is visited more than |Q| times, and using
the fact that the automaton has at least two states, we obtain j − i < |Q|2.

Claim. Let k = 1, . . . , |Q|. If g < h in {i, . . . , j} are such that the sequence
rg, . . . , rh contains at most k distinct states, and, furthermore, #T (ug, uh) ≥ k, then
there are g′ < h′ in {g, . . . , h} such that rg′ = rh′ and #T (ug′ , uh′) ≥ 1.

Proof. The proof is by induction on k. For k = 1 the statement is obvious.
Consider now k > 1. We take a longest suffix um, . . . , uh of ug, . . . , uh where the leaf ug

is not visited anymore (in particular, all leaves um, . . . , uh are to the right of ug). By
assumption on all moves going at most one position to the right, the leaf um must
be the leaf immediately to the right of ug, and therefore #T (um, uh) ≥ k − 1. If the
states rm, . . . , rh do not contain the state rg, then we apply the induction hypothesis.
Otherwise, the position among m, . . . , h where state rg is used gives us the desired g′

and h′, since all nodes um, . . . , uh are to the right of ug.
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Using this claim with g = i and h = j, together with j − i < |Q|2, we find two
indices i′ < j′ such that ri′ = rj′ = r, j′ − i′ < |Q|2, and #T (ui′ , uj′) ≥ 1. We will
use this to show that there is also a right-teleport in the component. When combined
with the left-teleport from our assumption on Γ, we will get a full-teleport.

By assumption on the values kl, each pair rl, rl+1 has some move offset ml ≥ kl.
(Here we use the convention that there is a move offset ml = 0 ≥ kl when the run from
[rl, ul] to [rl+1, ul+1] is of type (b), i.e., when rl �a rl+1 holds.) By Proposition 6.10
each nonempty move has a move offset in {−1, 0, 1}, and we have ml ≥ −1. Further-
more, if ml > 1, then rl, rl+1 would be right-skipping; hence we have −1 ≤ ml ≤ 1.
Therefore,

1 ≤ #T (ui′ , uj′) = ki′ + · · · + kj′−1 ≤ mi′ + · · · + mj′−1 < |Q|2.

(The last inequality is due to j′ − i′ < |Q|2 and ml ≤ 1.) However, since the sum

m = mi′ + · · · + mj′−1

is composed only of move offsets, it must belong to roff |Q|2(r, r) and therefore also to
roffD(r, r), since

D = |Q|(|Q| + 1) > |Q|2.

We will now show that roff3D(r, r) contains all integers, and therefore r, r is a 3D-
full-teleport. Indeed, let v and w be two leaves in a tree t, both with safety margin
at least 3D. We will show that the automaton can go from [r, v] to [r, w]. Using
m ∈ roffD(r, r) (recall that m ≥ 1), starting from [r, v], we successively move to the
right by steps of m leaves. We stop as soon we have reached a configuration [r, u]
with u located at least D leaves to the right of w, possibly stopping immediately.
Observe that if u �= v (i.e., u is to the right of v), then the leaf u is numbered at
most #T (w) + D + m − 1, and thus u has at least 3D − (D + m − 1) leaves to its
right. Since m < D, this value is larger than D. Hence, such a leaf u can indeed
be reached using m ∈ roffD(r, r). Since both u and v have safety margin at least
D > 2|Q|, we can therefore use the (2|Q|, D)-left-teleport—that all state pairs in Γ
have by assumption—to go from [r, u] to [r, w].

Once one state pair r, r has been shown to be a full-teleport, the same can be
argued for the other state pairs in Γ. This is done in the same way as in the last part
of the proof of Lemma 7.5. As in that lemma, the safety margin must be increased
by |Q|; hence the value E = 3D + |Q| in the statement of this lemma.

Lemma 7.7. For v, w leaves below the pivot in T ′, and p, q in Γ, [p, v] ⇒T ′ [q, w].
Before we proceed with the proof, we show how this implies that Γ cannot detect

the rotation. Indeed, consider the leaf run

[p, v] ⇒T [r1, u1] ⇒T · · · ⇒T [rn, un] ⇒T [q, w]

that goes from [p, v] to [q, w]. As mentioned before, we assume that all u1, . . . , un are
below the pivot, and hence only the first and last moves cross the pivot. Thanks to
the yet unproved Lemma 7.7, it suffices to connect [p, v] with some leaf configuration
in T ′ below the pivot and also connect some leaf configuration in T ′ below the pivot
with [q, w]. We will therefore show that there are leaves u′

1 and u′
n in T ′ below the

pivot such that

[p, v] ⇒T ′ [r1, u
′
1] and [rn, u

′
n] ⇒T ′ [q, w].
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First consider the path from v to u1 in T . This path first goes to the pivot, arriving
there in some state s, and then moves down to the configuration [r1, u1]. This implies
s ↓ r1. Hence, by the time-symmetric variant of Lemma 6.5, one of the sets ↙+ or ↘+

is included in D(s, r1). In the first case we pick u′
1 to be the leftmost leaf below the

pivot in T ′, while in the second case we take the rightmost one. The symmetric
reasoning also works for u′

n.

Only the proof of Lemma 7.7 remains. Let v, w be leaves below the pivot, and let
p, q belong to Γ. We need to show that [p, v] ⇒T ′ [q, w] holds.

By Lemma 7.6, either all pairs of states r, r′ in Γ are E-full-teleports, or there
exists a pair of states r, r′ in Γ that is right-skipping. In the first case, there are more
than E leaves to the left and to the right of the pivot by (7.2) and hence to the left
and to the right of both v and w. The E-full-teleport p, q is usable, and the statement
of the lemma follows.

We now treat the case when some state pair r, r′ in Γ is right-skipping. By as-
sumption, all state pairs in the component Γ are (2|Q|, D)-left-teleports. Our strategy
is to combine the left-teleports with the right-skipping move r, r′. First, we use the
left-teleport to go from [p, v] to [r, u], with u being a specially chosen leaf to the left
of the pivot. We then use the right-skipping move and the properties of u in order to
move to [r′, u′], with u′ being a specially chosen leaf to the right of the pivot. Finally,
we use the left-teleport to reach the configuration [q, w]. This process is illustrated in
Figure 7.4.

x

( p,v  )( r,u  ) ( q,w  ) ( r ,u  )´ ´

Fig. 7.4. The leaf run witnessing [p, v] ⇒T ′ [q, w].

We need to find leaves u and u′ such that the above strategy works. This is the
goal of the claim below. The first property in the statement allows us to perform the
right-skip, while the last three allow us to use the left-teleport.

Claim. There exist leaves u, u′ in T ′ such that

• the path between u and u′ belongs to S(r, r′) (r, r′ taken from Lemma 7.6);
• there are at least D leaves between u and any node below the pivot;
• there are at least D leaves between any node below the pivot and u′; and
• there are at least 2|Q| leaves to the left and right of both u, u′.

Proof. The states r, r′ are right-skipping by assumption. Hence, by definition of
a right-skipping move and Lemma 6.3, one can find states s, s′ with

r ↑ s � s′ ↓ r′

such that either U(r, s) \ ↖+ or D(s′, r′) \ ↙+ is nonempty. First consider the case
when U(r, s) \↖+ is nonempty. This means that r ↗ s holds. Hence, by Lemma 6.5,
U(r, s) contains either ↖∗↗ or ↗+, and D(s′, r′) contains either ↙+ or ↘+. By
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x
u

01

011

u’

Fig. 7.5. The move from u to u′.

time-symmetry, in the case when D(s′, r′) \↙+ is nonempty, D(s′, r′) contains either
↘+ or ↘↙∗, and U(r, s) contains either ↖+ or ↗+.

Altogether, we obtain that R(r, r′) contains at least one of the following five moves
(using swallowing, we have simplified ↖∗↗ into ↖∗, and ↘↙∗ into ↙∗):

↗∗
�↙∗, ↖∗

�↘∗, ↗∗
�↘∗, ↖∗↗�↙∗, or ↖∗

�↘↙∗.

We treat each of these cases separately. For ↗∗
�↙∗, take u to be the leftmost

leaf below 01 and u′ to be the leftmost leaf below 011 (see Figure 7.5). Clearly the
path from u to u′ belongs to ↗∗

�↙∗; hence the first property of the statement holds.
By changing the leaves u and u′, we obtain similarly the other cases: for ↖∗

�↘∗,
take u to be the rightmost leaf below 0100 and u′ to be the rightmost leaf below 010;
for ↗∗

�↘∗, take u to be the leftmost leaf below 01 and u′ to be the rightmost leaf
below 010; for the case ↖∗↗�↙∗, take u to be the rightmost leaf below 0100 and
u′ to be the leftmost leaf below 011; for ↖∗

�↘↙∗, take u to be the rightmost leaf
below 0100 and u′ to be the leftmost leaf below 01011. In each case, the path from u
to u′ belongs to S(r, r′), and therefore the first item of the statement is satisfied.

For the second item of the statement, note that in all five cases above, the leaf u
is located below 0100. Using condition 3 of Definition 10, we also know that the pivot
is below the node 01010101. Hence, all the leaves below 010100 are to the right of u
and to the left of the pivot. Furthermore, by (7.2), there are more than D such leaves.
The third item is similar: in all five cases, u′ is below 011 or 01011. Hence, the leaves
below 0101011 are to the right of the pivot and to the left of u′. And there are more
than D of them.

The fourth point is obtained by the same kind of arguments. The leaves below 00
are all to the left of u, and the leaves below 1 are all to the right of u′. And in each
case there are more than 2|Q| of them. This completes the proof of the claim.

This completes the proof that no component with a shift can detect the rotation.

7.3. Components without a shift cannot detect the rotation. In this
section we consider a component Γ without shifts. This is the second and last case to
be considered in the proof of Proposition 7.1. According to Proposition 6.10, every
nonempty move S(p, q) with p, q in Γ is a union of the elementary moves

Stay, , , , , , , , , , and

(see Figure 6.1). Our strategy is as follows. First, we distinguish some elementary
moves, called “adjacency moves.” Then we show that all other moves can be simulated
using adjacency moves. Finally, we show that a component where all moves are
adjacency moves cannot detect the rotation.
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Two paths in Right are called right adjacency similar if one can be obtained from
the other by replacing one fragment in by another. More formally, two paths are
right adjacency similar if they can be decomposed as

y ↖k
�↙l z and y ↖m

�↙n z, where k, l,m, n ∈ N, y ∈ Up + ε, z ∈ Down + ε.

Left adjacency similarity is defined in the same way by replacing ↖, �, and ↙ by
↗, �, and ↘, respectively. Two paths are adjacency similar if they are either left
or right adjacency similar.

Definition 12. An adjacency move is an elementary move closed under adja-
cency similarity.

The following simple fact is given without further proof.
Fact 7.8. Stay, , , , , , and are adjacency moves.
Adjacency moves are going to be used in conjunction with fractality (see condi-

tion 1 of Definition 10). The following lemma presents a typical example of such an
argument (fractality is not explicitly mentioned, but the lemma refers to characteristic
types and by consequence can be used with fractality).

v w

z΄
z

y

w΄

Fig. 7.6. The nodes y, v, z, z′, w, and w′.

Lemma 7.9. Fix a blank tree t, a node y, and two nodes z, z′ on the leftmost
branch below y1. Furthermore, let w be a leaf in the subtree of z and let w′ be a
leaf in the subtree of z′, both with the same characteristic types within the subtrees of
z and z′, respectively (see Figure 7.6). Then, for any given leaf v below y0 and any
adjacency move M ,

if vMw, then vMw′.

Proof. Assume vMw. Since M is an adjacency move and hence also an elementary
move, it is of the form U � D with π(y1, w) ∈ D. It is sufficient to prove that
π(y1, w′) ∈ D also holds. Since M is an adjacency move, D is of the form either
↙∗ or (↙ + ↘)∗. If D is ↙∗, this means that w is the leftmost leaf below y1 and
consequently also the leftmost leaf below z. Since w′ has the same characteristic
type (w.r.t. z′) as w (w.r.t. z), this means that w′ is the leftmost leaf below z′.
By consequence w = w′, and we have π(y1, w′) ∈ D. Otherwise D is of the form
(↙ + ↘)∗. Since w′ is below y1, this implies π(y1, w′) ∈ D.

We will now eliminate the moves , , , and , which are not adjacency
moves. This is done by simulating them by a sequence of adjacency moves. The
following lemma treats the case of , which is simulated by . The other cases
are symmetric.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWA DO NOT RECOGNIZE ALL REGULAR LANGUAGES 697

Lemma 7.10. Let t be a tree and let u, v be two leaves of t. If u v and v is not
the rightmost leaf of t, then there exists a leaf w such that u w v. If there exists
a leaf w such that u w v, then u v.

Proof. We prove here only the first implication; both implications can be seen in
the following picture:

v u

 y

 z

w

Let w be the next leaf in t after v. Since v is not the rightmost leaf, w exists. By the
choice of w, we have w v. Let us show u w.

Let y be the deepest node above both u and v. Since u v holds, v is the rightmost
leaf below y. Let z be the deepest node above both y and w. Since w is the next leaf
after v—which is the rightmost leaf below y—the leaf w is the leftmost one below z1.
But then we can use to go from u to w (the appropriate path doing a � from z0
to z1).

In the remainder of the proof, we use only the fact that for each p, q ∈ Γ the move
S(p, q) is a union of elementary moves. We then use Lemma 7.10 in the following
manner. We enrich the automaton by allowing (after a nondeterministic choice) each
move to be possibly replaced by the sequence of followed by , likewise for the
other moves , , and , by using time-, space-, and time-space-symmetric vari-
ants of this operation. (Note that this transformation requires the use of extra states.)
According to the second implication of Lemma 7.10, the resulting automaton is equiv-
alent to A. Furthermore, any unrooted leaf run of the original automaton that uses
only states from Γ can be transformed—using the first implication of Lemma 7.10—
into an unrooted leaf run of the modified automaton where all moves happening below
the pivot (i.e., the source and target leaves of the move are below the pivot) are ad-
jacency moves. For this reason, from now on, we assume that all moves happening
below the pivot are adjacency moves.

We proceed to show that Γ cannot detect the rotation. We have to show that

[p, v] ⇒T [q, w] implies [p, v] ⇒T ′ [q, w]

for any states p, q ∈ Γ and nodes v, w not below the pivot. As before (in section 7.2),
since T and T ′ are equal over nodes not below the pivot, it suffices to establish the
lemma for unrooted leaf runs where all positions but the initial and final ones are
below the pivot. In other words, the first move of the unrooted leaf run is used to
enter the subtree of the pivot, the last move is used to exit it, and in between all
moves are below the pivot. In this run all moves but the initial and final ones are
used between leaf configurations below the pivot. Hence, according to the comment
above, we can assume that all the moves used in this unrooted leaf run are adjacency
moves, except possibly the first and last ones.

Recall from section 7.2.1 the bijection f that assigns to every leaf in T a leaf in T ′

and preserves the numbering. Let V1, V2, and V3 be the sets of leaves of T below
x00, x01, and x1, respectively. Let W1, W2, and W3 be the sets of leaves of T ′ below
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V V V W W W1 12 23 3

x x

Fig. 7.7. The trees T and T ′.

x0, x10, and x11, respectively (see Figure 7.7 for an illustration). By definition of
rotation, f(Vi) = Wi for i = 1, 2, 3. We say that two leaves v ∈ Vi and w ∈ Vj are
neighbors if |i−j| ≤ 1. If v, w are neighbors, then the path linking v to w and the path
linking f(v) to f(w) are adjacency similar. In particular, whenever the automaton
can go from v to w in one adjacency move, then it also can do this from f(v) to f(w).
Therefore, a leaf run that does only moves between neighbor nodes is mapped by f
onto a valid leaf run in the tree T ′.

This remark is the key to our proof. The idea is that we will transform the run
from [p, v] to [q, w] into one where all moves below the pivot are between neighbor
leaves. Let the leaf run corresponding to [p, v] ⇒T [q, w] be

[p, v] = [r0, u0], [r1, u1], . . . , [rn, un], [rn+1, un+1] = [q, w].

We will transform it into the following leaf run in T ′:

[p, v] = [r0, u0], [r1, f(u1)], . . . , [rn, f(un)], [rn+1, un+1] = [q, w].

For this construction to work, i.e., for this sequence to be a valid leaf run over T ′,
it is sufficient to verify that the step from [r0, u0] to [r1, u1] can be transformed into
a step from [r0, u0] to [r1, f(u1)] (similarly for the last step) and, furthermore, that
the following property (*) holds: for every 1 ≤ i < n, the leaves ui and ui+1 are
neighbors. We first establish the first property; then we will show that every run can
be transformed into one where (*) holds. (Property (*) may not hold for the original
run.)

First step of the leaf run. The move from [r0, u0] to [r1, u1] is an elementary move,
though perhaps not an adjacency move. Hence, there are three ways of entering the
subtree of the pivot: by going to the leftmost leaf below the pivot (using one of ,

, ), to the rightmost one (using one of , , ), or anywhere (using one of
, , , ). In each of those cases, using the same argument as in Lemma 7.9,

it can easily be shown that the same move goes from [r0, u0] to [r1, f(u1)]. The proof
for the last step of the leaf run is the same.

Proof of (*). According to the remark above, there are three ways to enter the
subtree of the pivot. By time symmetry, there are also three ways to exit this subtree.
This results in nine possibilities.

Case leftmost-leftmost. Consider first the case where the automaton enters in the
leftmost node of V1 and leaves by the same node. This means that u1 = un is the
leftmost leaf below x.

Since the subtree of the pivot is fractal (condition 1 of Definition 10), it contains
a proper subtree that simulates it. Since all subtrees of T are complete binary trees,
we may as well assume that there is a node u on the leftmost branch below x0 whose
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x x

u

Fig. 7.8. Moving the leaf run to V1.

subtree simulates the subtree of x. Since the leftmost node is one of the characteristic
types (from the definition of fractality), the leaf run that went from the leftmost node
below the pivot back to this leftmost node can be assumed to visit only nodes below u
(see Figure 7.8). Such a leaf run satisfies property (*), since it never leaves V1 ∪ V2.

All other cases are solved using the same argument, except for two: when the
automaton enters in the leftmost leaf below the pivot and leaves in the rightmost one,
and when the automaton enters in the rightmost leaf below the pivot and leaves in
the leftmost one. The first of these is treated in the next item, and the other follows
by time symmetry.

Case leftmost-rightmost. This time u1 is the leftmost leaf of V1 and un the right-
most leaf of V3. We are going to construct a similar leaf run satisfying (*).

As an intermediate step, we first construct a similar leaf run satisfying the different
property (#): once a position in V3 is encountered during the run, no position in V1

is visited anymore. Let us prove that we can transform the unrooted leaf run into
one that satisfies (#). Let 1 < i ≤ j < n be positions in the run that witness a
violation of (#): the leaves ui−1 and uj+1 belong to V3, the leaves ui, . . . , uj belong
to V1 ∪ V2, and at least one of ui, . . . , uj belongs to V1. We will replace this violating
subrun with one that does not visit V1. By iterating this operation, we get a run
where property (#) is satisfied.

By condition 1 of Definition 10, we can find on the rightmost branch below x01
a node u such that the subtree of u simulates the subtree of x0. Hence, one can
find leaves u′

i, u
′
j below u such that the characteristic type of ui (resp., uj) in the

subtree of x0 is the same as the characteristic type of u′
i (resp., u′

j) in the subtree
of u, and there is a run from [ri, u

′
i] to [rj , u

′
j ] that uses only leaves below u. By

choice of u, all these leaves are in V2. Therefore, in order to remove the violation
of (#) witnessed by i and j, it remains for us to connect [ri−1, ui−1] with [ri, u

′
i] and

[rj , u
′
j ] with [rj+1, uj+1]. This is a direct application of Lemma 7.9 (and its time- and

space-reverse variants); note that [ri−1, ui−1] → [ri, ui] and hence ui−1Mui for some
adjacency move M ⊆ S(ri−1, ri).

Thanks to the above argument, we may assume that the leaf run satisfies prop-
erty (#). If it already has property (*), then the problem is over. Otherwise, there
is some moment in the leaf run where two consecutive leaf configurations are not
neighboring. Since after visiting V3 we never come back to V1, this can happen at
most once, where the source configuration [ri, ui] is in V1 and the target configuration
[ri+1, ui+1] is in V3. Moreover, the only way to go from a position in V1 to a position
in V3 via an adjacency move is by using . In particular, ui+1 is the leftmost leaf
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in V3. However, if we want to use the move from [ri, ui] and satisfy property (*),
the only place we can go to is the leftmost leaf of V2.

In order to complete the proof, we will construct a new leaf run that satisfies
property (*) and goes from state ri+1 in the leftmost leaf of V2 to state ri in some
leaf u of V2. Then we can reuse the move ri ri+1 to go from u to ui+1, since does
not care about the position of the leaf u within V1 ∪ V2.

The leaf run that goes from ri+1 in the leftmost leaf of V2—call this leaf v—to
ri in some leaf u of V2 is constructed in two stages. In the first stage, we show that
there is some leaf u′ in V2 such that the configuration [rn, u

′] can be reached from
[ri+1, v]. Furthermore, the leaf u′ has at least |Q| leaves to the left and to the right
that belong to V2. In the second stage, we use this latter assumption to go from [rn, u

′]
to state ri without leaving V2. This is done simply by using Lemma 7.4 (observe that
this lemma does not use any assumption on the component). The node where we
arrive is going to be u.

Therefore, in order to complete the proof of Proposition 7.1—and therefore also
the proof of Theorem 2—it remains to find some leaf u′ in V2 such that the configu-
ration [rn, u

′] can be reached from [ri+1, v] and such that u′ has |Q| leaves to the left
and right inside V2. This process is illustrated in Figure 7.9.

rnri+1

x x

y

ri+1 rn

x

y’

ri+1 rn

Fig. 7.9. Transforming the run from ri+1 to rn.

Recall our assumption that the nodes ui+1, . . . , un are all in V2∪V3. By condition 1
of Definition 10, there is a node y on the leftmost branch below x10 whose subtree
simulates the subtree of x1 and has more than |Q| leaves. Using the same proof as for
property (#), we can transform the unrooted leaf run from [ri+1, ui+1] to [rn, un] into
an unrooted leaf run from [ri+1, ui+1] to [rn, u

′
n], where only leaves from V2 or below y

are used, and where u′
n is the rightmost leaf below y. (This run is illustrated in the

middle picture of Figure 7.9.) Let y′ be the node on the leftmost branch below x01
such that the subtree of y′ is the same as the subtree of y. By using the properties
of adjacency moves, one can shift—by |V2| leaves to the left—the run that goes from
[ri+1, ui+1] to [rn, u

′
n] into a run that goes from [ri+1, v] to [rn, u

′], where u′ is the
rightmost leaf below y′, which concludes the proof of Proposition 7.1. Note that in V2,
there are more than |Q| leaves to the left and to the right of u′, by construction of y.
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