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Abstract

We develop an algebraic theory for languages of data words. We prove
that, under certain conditions, a language of data words is definable in
first-order logic if and only if its syntactic monoid is aperiodic.

1 Introduction

This paper is an attempt to combine two fields.
The first field is the algebraic theory of regular languages. In this theory, a

regular language is represented by its syntactic monoid, which is a finite monoid.
It turns out that many important properties of the language are reflected in
the structure of its syntactic monoid. One particularly beautiful result is the
Schützenberger-McNaughton-Papert theorem, which describes the expressive
power of first-order logic.

A regular language of finite words is definable in first-order logic
if and only if its syntactic monoid is aperiodic.

For instance, the language “words where there exists a position with label a”
is defined by the first-order logic formula (this example does not even use the
order on positions <, which is also allowed in general)

∃x a(x).

The syntactic monoid of this language is isomorphic to {0, 1} with multiplica-
tion, where 0 corresponds to the words that satisfy the formula, and 1 to the
words that do not. Clearly, this monoid does not contain any non-trivial group.
There are many results similar to the theorem above, each one providing a con-
nection between seemingly unrelated concepts of logic and algebra, see e.g. the
book [13].

∗Author supported by ERC Starting Grant “Sosna”
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The second field is the study of languages over infinite alphabets, commonly
called languages of data words. Regular languages are usually considered for
finite alphabets. Many current motivations, including XML and verification,
require the use of infinite alphabets. As an example of an infinite alphabet,
consider an infinite set D, whose elements are called data values. A typical lan-
guage, which we use as our running example, is “some two consecutive positions
have the same letter”, i.e.

Ldd =
⋃
d∈D

D∗ddD∗ = {d1 · · · dn ∈ D∗ : di = di+1 for some i ∈ {1, . . . , n− 1}}.

As another example, consider an alphabet A = {a, b} × D, and the language
“some two letters agree on the second coordinate”, that is⋃

d∈D
A∗
(
(a, d) + (b, d)

)
A∗
(
(a, d) + (b, d)

)
A∗.

A number of automata models have been developed for such languages. The
general theme is that there is a tradeoff between the following three properties:
expressivity, good closure properties, and decidable (or even efficiently decid-
able) emptiness. The existing models strike different balances in this tradeoff,
and it is not clear which balance, if any, should deserve the name of “regular
language”. Also, logics have been developed to express properties of data words.
For more information on automata and logics for data words, see the survey [12].

The motivation of this paper is to combine the two fields, and prove a theo-
rem that is analogous to the Schützenberger-McNaughton-Papert characteriza-
tion theorem, but talks about languages of data words. If we want an analogue,
we need to choose the notion of regular language for data words, the definition
of first-order logic for data words, and then find the property corresponding to
aperiodicity.

For the sake of simplicity, we assume that the alphabet is of the form A =
Σ× D, where Σ is a finite set, whose elements are called labels, and where D is
the infinite set of data values. Later, we will study a more general and abstract
definition of an alphabet, which will cover other cases, e.g. the set of unordered
pairs of data values.

For first-order logic over data words we use a notion that has been established
in the literature. Formulas are evaluated in data words. The quantifiers quantify
over positions of the data word, we allow two binary predicates: x < y for order
on positions, and x ∼ y for having the same data value. Also, for each label
a ∈ Σ we have a unary predicate a(x) that selects positions with label a. An
example of a formula of first-order logic is the formula

∃x∃y x < y ∧ x ∼ y ∧ ¬(∃z x < z ∧ z < y),

which defines the language Ldd in the running example.
As for the notion of regular language, we use the monoid approach. For

languages of data words, we use the syntactic monoid, defined in the same way
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as it is for words over finite alphabets. That is, elements of the syntactic monoid
are equivalence classes of the two-sided Myhill-Nerode congruence. When the
alphabet is infinite, the syntactic monoid is infinite for almost every language of
data words. For instance, in the case of the running example language Ldd, two
words w,w′ ∈ D∗ are equivalent if and only if: either both belong to Ldd, or
both have the same first and last letters. Since there are infinitely many letters,
there are infinitely many equivalence classes.

Instead of studying finite monoids, we study something called orbit-finite
monoids. Intuitively speaking, two elements of a syntactic monoid are consid-
ered to be in the same orbit if there is a renaming of data values that maps one
element to the other1. For instance, in the running example Ldd, the elements
of the syntactic monoid that correspond to the words 1 · 7 and 2 · 3 · 4 · 8 are
not equal, but they are in the same orbit, because the renaming i 7→ i+ 1 maps
1 · 7 to 2 · 8, which corresponds to the same element of the syntactic monoid as
2 · 3 · 4 · 8. It is not difficult to see that the syntactic monoid of Ldd has four
orbits: one for the empty word, one for words outside Ldd where the first and
last letters are not equal, and for words outside Ldd where the first and last
letters are equal, and one for words inside Ldd. The monoid is illustrated in
Figure 1.

Figure 1: The syntactic monoid of Ldd. Rounded rectangles represent orbits, the
middle two orbits are infinite. Dotted circles represent elements of the monoid,
which are equivalence classes under two-sided Myhill-Nerode equivalence.

The contribution of this paper is a study of orbit-finite monoids. We develop
the algebraic theory of orbit-finite monoids, and show that it resembles the
theory of finite monoids. The main result of the paper is Theorem 9.1, which
shows that the Schützenberger-McNaughton-Papert characterization also holds
for languages of data words with orbit-finite syntactic monoids.

1This is related to Proposition 3 in [9].
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Nominal sets. The key idea of using permutations of data values to act on
the syntactic monoid of a language, or more generally, to act on any monoid,
goes back to nominal sets. The theory of nominal sets originates from the work
of Frankel in 1922, further developed by Mostowski in the 1930s. At that time,
nominal sets were used to prove independence of the axiom of choice, and other
axioms. In Computer Science, they have been rediscovered by Gabbay and Pitts
in [7], as an elegant formalism for modeling name binding. Since then, nominal
sets have become a lively topic in semantics. They were also independently
rediscovered by the concurrency community, as a basis for syntax-free models
of name-passing process calculi, see [10, 11].

The definition of monoid used in this paper is the same thing as a monoid
in the category of nominal sets. That is why we call it a nominal monoid. The
restriction on orbit-finiteness is what corresponds to finiteness in the category
of nominal sets (more precisely, a nominal set is orbit-finite if and only if it is a
finitely presentable object). In other words, the theory of syntactic monoids for
languages of data words turns out to be the same theory as the theory of finite
monoids in the category of nominal sets.

Other related work. The idea to present effective characterizations of logics
on data words was proposed by Benedikt, Ley and Puppis. In [1], they show that
definability in first-order logic is undecidable if the input is a nondeterministic
register automaton. Also, they provide some decidable characterizations, includ-
ing a characterization of first-order logic with local data comparisons within the
class of languages recognized by deterministic register automata. This result is
incomparable to the one in this paper, because we characterize a different logic
(data comparisons are not necessarily local), and inside a weaker class of recog-
nizers (nominal monoids have less expressive power than deterministic register
automata).

There are two papers on algebra for languages over infinite alphabets. One
approach is described by Bouyer, Petit and Thérien [5]. Their monoids are
different from ours in the following ways: the definition of a monoid explicitly
talks about registers, there is no syntactic monoid, monoids have undecidable
emptiness (not mention questions such as aperiodicity or first-order definability).
Our setting is closer to the approach of Francez and Kaminski from [6], but the
latter talks about automata and not monoids, and does not study the connection
with logics.

Progress beyond the conference version. This article is a journal version
of a conference paper [2]. The main difference is that the conference version was
written without examining the connection to nominal sets; this shortcoming is
fixed here. The paper is written entirely using the language of nominal sets;
and theorems from the nominal literature are cited instead of reproved.

Using the abstract language of nominal sets requires more abstract and gen-
eral definitions. An important example is our abstract notion of first-order logic
and MSO logic for words in nominal sets. In the special case of data words
with alphabets of the form Σ×D, the abstract logic coincides with the standard
notion of logic for data words.

4



Unlike the conference version, we use the more general notion of nominal
sets, from [4], which allows more structure on data values, such as order instead
of equality only.

2 Nominal sets

In this section we describe nominal sets. The definition is based on [4], with
slight modifications.

Group action. A (right) action of a group G on a set X is a function

(x, π) ∈ X ×G 7→ xπ ∈ X

subject to axioms
x1 = x x(πσ) = (xπ)σ

for x ∈ X and π, σ ∈ G, where 1 is the neutral element of G. A set equipped
with such an action is called a G-set. The point of the axioms is to make
unambiguous an expression like xπσ.

Nominal symmetry. The notion of nominal sets is parametrized by a set D,
which is called the set of data values, and a group G of bijections on D. The
group G need not contain all bijections of D. The idea is that D might have
some structure, and G contains the structure-preserving bijections (i.e. auto-
morphisms). The pair (D, G) is called a data symmetry. In this paper, we will
use the following symmetries as the examples:

• The set D is empty, and G has only the identity element. We call this the
classical symmetry.

• The set D is a countable set, say the natural numbers. The group G
consists of all bijections on D. We call this the equality symmetry.

• The set D = Q is the set of rational numbers, and G is the set of monotone
bijections. We call this total order symmetry.

Nominal set. Consider a data symmetry (D, G). When C is a set of data
values, we denote by GC the subgroup

{π ∈ G : π|C is the identity on C}.

If X is a G-set, then a set C is called a support of x ∈ X if x = xπ for all
π ∈ GC . In other words, the orbit of x under the action of GC is a singleton.

Definition 2.1 Consider a data symmetry (D, G), and a finite set C ⊆ D of
data values. A nominal set with support C is a GC-set where every element has
some finite support.
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Let X and Y be two nominal sets, with support C and D, respectively. A
function f : X → Y is called a nominal function if it commutes with the action
of GE for some finite set E. More precisely, there must be a finite set E ⊇ C∪D
such that the following diagram commutes for every π ∈ GE

X

π

��

f // Y

π

��
X

f
// Y

Nominal sets and nominal functions form a category, which is parametrized
by the data symmetry (D, G). We say a nominal set is equivariant if it has
empty support. A nominal function is called equivariant if the set E in the
definition is empty. In an equivariant function, the domain and codomain must
be equivariant sets.

Observe that nominal sets in the classical symmetry are simply sets (equipped
with the only possible action), and nominal functions are simply functions.
Therefore the classical symmetry corresponds to classical set theory, without
data values.

Nominal subsets. Let X be a nominal set with support C. A subset Y ⊆ X
is called a nominal subset if there is some finite set of data values D ⊇ C such
that

x ∈ Y iff xπ ∈ Y for every y ∈ X and π ∈ GD.

In other words, Y is a nominal set with support D, when the set X is restricted
to Y and the action is restricted to GD.

Orbit finite sets. Let X be a nominal set with support C. We say that X is
orbit-finite with respect to C if it has finitely many orbits under the action of
GC .

Assumptions on the data symmetry. In this paper, we only consider data
symmetries that satisfy the following assumptions.

• Least supports. Every element of a nominal set has a finite support that
is least with respect to inclusion. This assumption is very useful in proofs.
Intuitively it says that an element of a nominal set can be canonically
represented by identifying its least support.

• Cartesian products. Orbit-finite sets are preserved under Cartesian
products. The usefulness of this assumption should be clear: it is very
difficult to get any work done without pairs and other tuples.

• Orbit refinement. Let C ⊆ D be supports of a nominal set X. If X is
orbit-finite with respect to C, then it is also orbit-finite with respect to
D. The reason for this assumption is that it establishes a robust notion of
“finite” set, namely the notion of an orbit-finite set, see Lemma 2.2 below.

6



These assumptions are satisfied by the classical, equality and total order
symmetries. This was shown in [4] for least supports and Cartesian products,
and in [3] for orbit refinement. For other examples of data symmetries that
satisfy these properties, see [4, 3].

An example of a data symmetry that violates all three assumptions is when
the data values are integers Z, and the group consists of translations x 7→ x+y.
The set Z of data values itself is a counter-example to all three assumptions. It
does not have least supports, since 0 ∈ Z, or any other number, is supported
by every singleton, but not by the empty set. The set Z is orbit-finite, since it
has just one orbit, but Z × Z has infinitely many orbits, which are diagonals
of the form {(x, y + x) : y ∈ Z}. Finally, Z is orbit-finite with respect to the
empty set of data values, but it shatters into singleton orbits with respect to
any nonempty set of data values.

As mentioned above, a corollary of orbit refinement is we can simply say
that a set is orbit-finite, without saying that it is finite with respect to some C,
as stated by the following lemma.

Lemma 2.2 Let C,D be supports of a nominal set X. Then X is orbit-finite
with respect to C if and only if it is orbit-finite with respect to D.

Proof
Suppose that X is orbit-finite with respect to C. By orbit refinement, it is
orbit-finite with respect to C ∪D ⊇ C. Because the group GC∪D is a subgroup
of GD, then orbit-equivalence with respect to GC∪D refines orbit-equivalence
with respect to GD. It follows that X is also orbit-finite with respect to D. �

Background. The definition of nominal sets presented above is based on, but
not identical to, the one from [4]. The definition used in this paper is slightly
more relaxed than the one in [4]; in [4] the category of nominal sets used only
equivariant sets and equivariant objects. The difference between the nominal
sets from [4] and this paper, and the nominal sets of Gabbay and Pitts [7], is
that here and in [4] there is the additional parameter of a data symmetry, while
in [7] the data symmetry is always assumed to be the same, namely D is the
natural numbers and G is the set of all permutations of natural numbers.

3 Nominal monoids

Fix a data symmetry (D, G). When talking about nominal sets and functions
below, we mean nominal under this symmetry. In the category of nominal sets,
there is a natural definition of a monoid:

Definition 3.1 A nominal monoid is a monoid, where the carrier is a nominal
set, and the concatenation operation is nominal. If M,N are nominal monoids,
then a nominal monoid morphism α : M → N is a function that is both a
nominal function and a monoid morphism.
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Example: Consider the running example Ldd, which is in the equality sym-
metry. We now describe the syntactic monoid of this language, which is illus-
trated in Figure 1. The carrier of the monoid is the set

{0, 1} ∪ D2.

The 0 and 1 are not atoms, but the traditional zero and identity elements of a
monoid: anything multiplied by 0 is 0, and anything mulitplied by 1 is itself.
This carrier has empty support. The action of G is natural: it does nothing
to the elements 0 and 1, and it renames the coordinates of the pairs in D2.
The carrier has four orbits: two singleton orbits {0} and {1}, an orbit for the
diagonal {(d, d) : d ∈ D}, and an orbit for the co-diagonal {(d, e) : d 6= e ∈ D}.
It is easy to see that every element of the carrier has finite support: the elements
0 and 1 have empty supports, while an element (d, e) has support {d, e}. Finally,
multiplication for elements that are not 0 or 1 is defined by

(d1, d2)(e1, e2) =

{
(d1, e2) if d2 6= e1

0 otherwise.

This operation is clearly nominal, it has empty support. The language Ldd from
the running example is recognized by the monoid morphism defined by

α(d1 · · · dn) =


1 if n = 0
0 if d1 · · · dn ∈ Ldd
(d1, dn) otherwise.

The accepting set is {1}. This particular accepting set is simply finite, but for
the complement of Ldd we have an orbit-finite, but not finite, accepting set. �

The rest of this section is devoted to showing that the properties of monoids
as language recognizers work just as well in the nominal setting, including the
free monoid and the syntactic monoid

3.1 Free monoid.

Let A be any nominal set, with support C. Define A∗ to be the set of words
over A, with support C and the action defined coordinatewise:

(a1 · · · an)π = (a1π) · · · (anπ) for π ∈ GC .

It is easy to see that A∗ is a nominal set, because the word a1 · · · an is supported
by the union of supports of its letters a1, . . . , an. (Observe that this would fail
for infinite words.) The following lemma shows that A∗ deserves to be called
free.

Lemma 3.2 Let M be a nominal monoid and A a nominal set. Every nominal
function α : A → M can be uniquely extended to a nominal monoid morphism
[α] : A∗ →M .
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Proof
The proof is routine. Suppose that C is a set of constants that includes all
the constants in A, α and M . If the extension [α] is to be a nominal monoid
morphism, it needs to satisfy

[α](a1 · · · an) = α(a1) · · ·α(an) for every a1, . . . , an ∈ A.

Therefore, if [α] exists, then it is unique. Since every word w ∈ A∗ has a unique
decomposition w = a1 · · · an, the above can be seen as the definition of [α]. It
remains to check that [α] is a nominal function, that is

([α](a1 · · · an))π = [α]((a1 · · · an)π) for every π ∈ GC .

By definition of the function [α], the left side of the equality becomes:

(α(a1) · · ·α(an))π.

Since the concatenation in M commutes with π, the above becomes

((α(a1))π) · · · ((α(an))π).

Because α is a nominal function, it commutes with π, and therefore the above
becomes

(α(a1π)) · · · (α(anπ)).

By definition of [α], the above becomes

[α]((a1π) · · · (anπ)).

Finally, by definition of the concatenation operation in A∗, the above becomes

[α]((a1 · · · an)π),

which is what we wanted to prove.�

Recognition. A nominal monoid morphism α : A∗ →M is said to recognize a
nominal language L ⊆ A∗ if there is a nominal subset F ⊆M such that

L = α−1(F ).

In this paper, we are mainly interested in the case when M is orbit-finite.

3.2 Syntactic monoid.

A nominal alphabet is any nominal orbit-finite set.

Examples of alphabets. Here are some examples of nominal alphabets, in
the equality symmetry.
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• The set D of data values.

• The product Σ× D, where Σ is a finite set and the action is defined by

(a, d)π = (a, dπ).

• Pairs of data values: D2.

• Unordered pairs of data values: {{d, e} : d 6= e ∈ D}.

• Recall that in the definition of a nominal set, Definition 2.1, a nominal set
comes with a support C. In the examples above, the support was empty.
An example of a set with nonempty support {d} is the set of data values
with some chosen value d being excluded: D− {d}.

In all examples except for the last one, the support of the alphabet is empty. In
the last example, the support is {d}.

Nominal language. Consider a nominal alphabet A. A nominal language
over A is a nominal subset of A∗. It is easy to see that any language recognized
by a nominal monoid morphism is a nominal language. Using the syntactic
morphism, we will also prove the converse in Lemma 3.3.

Two-sided Myhill-Nerode congruence. As usual for any language L ⊆ A∗,
one can define the two-sided Myhill-Nerode equivalence relation ≡L on A∗ by

w ≡L w′ iff uwv ∈ L iff uw′v ∈ L for all u, v ∈ A∗.

The syntactic monoid of L is defined to be the set of equivalence classes of A∗

under ≡L, with concatenation defined by

[w]≡L
[v]≡L

def= [wv]≡L
,

where wv denotes concatenation of words in A∗. As is well known, the above is
a proper definition (it does not depend on the choice of w and v), the resulting
concatenation operation is associative, its neutral element is the equivalence
class of the empty word, and the function w 7→ [w]≡L

is a monoid morphism,
which is denoted by αL and called the syntactic morphism. The syntactic mor-
phism recognizes L.

Lemma 3.3 If L ⊆ A∗ is a nominal language, then its syntactic monoid is a
nominal monoid, and the syntactic morphism is a nominal monoid morphism.

Proof
The assumption in the lemma is that for some support D that contains the
support of the alphabet, L = Lπ holds for all π ∈ GD.

We first define an action of GD on the syntactic monoid, which consists of
equivalence classes under ≡L. The action is defined by

[w]≡Lπ = [wπ]≡L
for all π ∈ GD.
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We first show that this is a correct definition, i.e. it does not depend on the
choice of w in the equivalence class. Suppose then that w ≡L w′. We need
to show that wπ ≡L w′π. This follows immediately from the definition of ≡L
and the assumption that Lπ = L. It is easy to see that every element of the
syntactic monoid has finite support, namely [w]≡L

is supported by whatever
supports w. This shows that the syntactic monoid is a nominal set.

Because the syntactic morphism is w 7→ [w]≡L
, the very definition of the

action in the syntactic monoid proves that the syntactic morphism is a nominal
function. �

The following lemma shows that the syntactic morphism is the “best mor-
phism” for recognizing a language.

Lemma 3.4 Consider a nominal language L ⊆ A∗. For every surjective nom-
inal monoid morphism α : A∗ →M that recognizes L, there is a unique β such
that β ◦ α is the syntactic morphism.

Proof
If there is an extension, then it is unique, so the only question is whether the
extension exists. Suppose that α : A∗ → M is a surjective morphism that
recognizes L. Let w,w′ ∈ A∗ be such that α(w) = α(w′). Then for all words
u, v ∈ A∗, we have

α(uwv) = α(u)α(w)α(v) = α(u)α(w′)α(v) = α(uw′v)

and therefore, because membership in L depends only on the image under α,
it follows that uwv ∈ L if and only if uw′v ∈ L. We have just shown that if
α(w) = α(w′), then w ≡L w′. Therefore, it makes sense to define a function

β : M →ML β(α(w)) = [w]≡L
,

which shows that α extends to the syntactic morphism. �

4 Logic

In this section, we give a definition of MSO and first-order logics for words in
any data symmetry. The definition is abstract, but in the special case of the
equality symmetry it specializes to the well known MSO and first-order logics,
which access data values via a binary data equality predicate.

Let A be an orbit-finite alphabet. Define a relational vocabulary τA, which
has one binary relation symbol <, and one n-ary relation symbol R for every
n-ary nominal subset R ⊆ An. The vocabulary is infinite.

A word w = a1 · · · ak ∈ A∗ can be treated as relational structure w over the
vocabulary τA. The carrier of the structure is the set {1, . . . , k} of positions.
There relation < is interpreted as the linear order on positions. Finally, a
relation R ⊆ An is interpreted in w as the set

{(i1, . . . , in) ∈ {1, . . . , k}n : (ai1 , . . . , aik) ∈ R}.
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When talking about nominal first-order logic for words over A, we refer to
first-order logic over the vocabulary τA. A sentence is said to be true in a word
w if it is true in the structure w. Likewise for MSO.

Example 1. Consider the equality symmetry, and an alphabet A = Σ × D
where Σ is finite. The standard definition of first-order logic for data words has
a predicate < for order, a predicate ∼ for equality on the data value, and a
unary predicate a(x) for every a ∈ Σ. We also add a unary predicate d(x) for
every d ∈ D, which selects positions that carry d as their data value. Call this
standard first-order logic for words over A. We show that the predicates of the
standard logic are available in the nominal logic. The order < is built in. For
the predicate ∼, it comes from the relation R∼ ⊆ A×A defined by

R∼ =
⋃
d∈D

(Σ× {d})× (Σ× {d}),

which is nominal. The label predicate a(x) comes from the relation Ra ⊆ A
defined by

Ra = {a} × D,

which is also nominal. It follows that the nominal logic is at least as powerful as
the standard logic. We will show in Theorem 4.1 that it actually has the same
expressive power, in the case of alphabets of the form Σ× D. �

Example 2. Consider the equality symmetry, and an alphabet

A =
(

D
2

)
def= {{d, e} : d 6= e ∈ D}.

This alphabet is a two-orbit nominal set, with the pointwise action. The stan-
dard definition of first-order logic for data words, discussed in the previous
example, does not extend to alphabets such as A. A typical language we might
study is the set of words where the first letter and the last letter have nonempty
intersection:

L =
⋃
a,b∈A
a∩b 6=∅

aA∗b.

This can be done in our nominal first-order logic for words over A, using the
predicate R ⊆ A×A,

R = {(a, b) : a ∩ b 6= ∅},

which is a nominal subset of A2.
Let us give the syntactic monoid of the language L. A nominal monoid

morphism which recognises this language maps a nonempty word to its first last
letter:

a1 · · · an ∈ A∗ 7→ (a1, an) ∈ A2.
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For the empty word we need a special value, call it 1. The nominal monoid in
the target of this morphism is therefore A2∪{1}, with 1 as the identity and the
monoid operation defined by

(a, b)(c, d) = (a, d).

It is not difficult to see that we have actually described the syntactic nominal
monoid. Indeed, if two words w,w′ disagree on their first or last letter, then one
can choose words x, y ∈ A∗ such that exactly one of the words xwy and xw′y is
in the language. �

4.1 Nominal vs standard logic

We now prove the result that was announced in Example 1, namely that nom-
inal and standard first-order logics coincide in the special case of the equality
symmetry and alphabets of the form Σ× D.

Theorem 4.1 Consider the equality symmetry, and an alphabet A = Σ × D,
with Σ a finite set. Then the standard and nominal first-order logics for words
over A have the same expressive power.

We have already shown in Example 1 that the standard logic is included in
the nominal logic. For the converse, we show that for every nominal relation

R ⊆ (Σ× D)n,

the predicate corresponding to R is definable in standard first-order logic. To-
ward this end, we use the following lemma.

Lemma 4.2 R is a finite boolean combination of relations of the form:

{((a1, d1), . . . , (an, dn)) ∈ (Σ× D)n : ai = a} for a ∈ Σ and i ∈ {1, . . . , n}
{((a1, d1), . . . , (an, dn)) ∈ (Σ× D)n : di = dj} for i, j ∈ {1, . . . , n}
{((a1, d1), . . . , (an, dn)) ∈ (Σ× D)n : di = d} for d ∈ D and i ∈ {1, . . . , n}

Furthermore, the relations of the last type are used only for data values d in the
least support of R.

Proof
Let D be the least support of the alphabet. Let C ⊆ D be the least support of
R, this set includes D. By definition of support of a set, R is a union of orbits
under the action of the group GC , i.e.

R =
⋃
ā∈R

āGC .

Because orbit-finite sets are closed under Cartesian products, then also An is
orbit-finite. By the orbit-refinement property, An has finitely many orbits under
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the action of any group with fixed support, in particular under the action of
GC . It follows that R can be described as a finite union

R = ā1GC ∪ · · · ∪ ākGC for tuples ā1, . . . , āk ∈ (Σ× D)n.

To prove the lemma, it is enough to show that for every tuple ā ∈ An and
every finite set of data values C, the set āGC is a finite boolean combination of
languages as in the statement of the lemma. Let us inspect the coordinates of
the tuple ā

ā = ((a1, d1), . . . , (an, dn)) ∈ (Σ× D)n

It is not difficult to show that a tuple

b̄ = ((b1, e1), . . . , (bn, en)) ∈ (Σ× D)n

belongs to āGC if and only if

• For every i ∈ {1, . . . , n}, the label bi is ai.

• For every i ∈ {1, . . . , n}, if di ∈ C, then ei = di.

• For every i ∈ {1, . . . , n}, if di 6∈ C, then ei 6∈ C.

• For every i, j ∈ {1, . . . , n} if di = dj then ei = ej .

All the conditions above are special cases of the relations in the statement of
the lemma. �

Theorem 4.1 follows immediately from the lemma above, because the re-
lations in standard first-order logic for data words can capture the predicates
corresponding to the relations in the statement of Lemma 4.2. Observe also
that, thanks to the “furthermore” clause in the lemma, if a formula of nominal
first-order logic uses only equivariant predicates, then its corresponding formula
in standard first-order logic does not need to use the predicates d(x) for d ∈ D.

The same proof as for Theorem 4.1 would work in other symmetries, such
as the total order symmetry, except that ∼ would need to be replaced by the
ordering on the data values.

5 Local finiteness

A monoid is called locally finite if every finitely generated submonoid of M is
finite. For example, the monoid N with addition is not locally finite, because the
submonoid generated by {1} is the whole infinite set N. Below is an example of
an infinite but locally finite monoid.

Example 3. Let X be an infinite set. Consider the monoid where elements
are subsets of X, and the monoid operation is set union. This monoid is infinite.
However, any finite set of n generators will generate a submonoid of at most 2n

elements, hence the monoid is locally finite. �
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In this section we show that every orbit-finite nominal monoid is locally
finite. As we shall see, this implies that most of Green’s theory can be used in
orbit-finite monoids.

Theorem 5.1 Every orbit-finite nominal monoid is locally finite.

In the proof, we use the following lemma.

Lemma 5.2 Let X be an orbit-finite nominal set, and C a finite set of data
values. There are finitely many elements in X that are supported by C.

Proof
We assume without loss of generality that X has one orbit. Let D be the least
support of the set X itself.

If an element x ∈ X is supported by C, then its least support (which exists
by the least support assumption) is a subset E ⊆ C, which must satisfy D ⊆ E.
There are finitely many subsets of C. Therefore, the lemma will follow once we
show that for every E ⊇ D there are finitely many elements x ∈ X whose least
support is E.

Consider the set Y ⊆ X of elements with least support E. Because the set
X has a single orbit, we know that for every x, y ∈ X there is some πxy ∈ GD
such that y = xπxy. In [4] it is shown that

E is the least support of x implies πxy(E) is the least support of xπxy

and therefore for every x, y ∈ Y , the function πxy, when restricted to E, is a
permutation of E. Toward a contradiction, suppose that Y is infinite. Because
there are finitely many permutations of E, the pigeon-hole principle says that
for every x ∈ Y there must be different elements y 6= z ∈ Y such that πxy and
πxz induce the same permutation on E. It follows that

πxy(πxz)−1 ∈ GE .

Therefore, by assumption that E supports x, we get

xπxy(πxz)−1 = x,

which contradicts our assumption on y, z being different:

y = xπxy = xπxz = z.

�

Proof (of Theorem 5.1)
Let M be an orbit-finite monoid. Suppose that X ⊆M is a finite set of gener-
ators, and let N be the submonoid of M generated by X. It is easy to see that
if a set of data values C supports m,n ∈M and the monoid operation, then it
also supports mn:

mnπ = (mπ)(nπ) = mn for π ∈ GC .
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Let C be a finite set that supports every element from X, and which also
supports the monoid. By the observation above, the set supports every element
of N . The result follows by Lemma 5.2. �

Aperiodic monoid. A monoid M is called aperiodic if

∀m ∈M ∃i ∈ N mi = mi+1.

We say that a monoid M contains a group if there is some subset G ⊆M , such
that M restricted to G with the same operation is a group, possibly with the
group identity not being the same as the monoid identity. The following lemma
shows that for locally finite monoids, containing a non-trivial group is the same
as violating aperiodicity.

Lemma 5.3 For a locally finite monoid, the following conditions are equivalent

• M does not contain a nontrivial subgroup.

• M is aperiodic.

Proof
Suppose first that M is aperiodic. We show that there can be no subgroup.
For the sake of contradiction, suppose that G is a subgroup. Let g ∈ G be an
element different than the group identity. By aperiodicity, there must be some
i ∈ N such that gi = gi+1, and by multiplying both sides by g−i, we get that
1 = g, where 1 is the identity of G.

In the converse implication, we use local finiteness. Suppose that M is not
aperiodic, i.e. there is some a such that ai 6= ai+1 holds for all i. By local
finiteness, the set {ai}i∈N is a finite. It follows that there must be some j such
that ai+j = ai. In this case the set

{ai, ai+1, . . . , ai+j−1}

forms a cyclic group. �

Observe that the two conditions in Lemma 5.3 are not equivalent in all
monoids. For instance, the group of integers with addition is aperiodic.

6 Local finiteness for MSO

As an added bonus, we prove a much stronger result than Theorem 5.1. This
section is independent from the rest of the paper, and may be skipped by the
reader who is only interested in the main result, Theorem 9.1

Theorem 6.1 Let A be an orbit-finite alphabet, and let L ⊆ A∗ be a language
definable in nominal MSO. Then the syntactic monoid of L is locally finite.
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Theorem 6.1 was stated in the conference paper but not proved. This the-
orem may come useful in future work. For instance, we might want to develop
an algebraic theory of languages recognized by deterministic, or even nonde-
terministic, finite nominal automata, as defined in [4]. These automata can be
simulated in MSO, and therefore Theorem 6.1 says that Green’s theory can be
used for them. The rest of this section is devoted to the proof of Theorem 6.1.

Fiber bounded morphism. A nominal morphism f : A∗ → B∗ is called
fiber bounded if for every w ∈ B∗, the preimage f−1(w) is finite. Examples of
nominal morphisms that are not fiber bounded include any morphism which
maps some letter to the empty word, or the morphism

f : (D× D)∗ → D∗

that maps all letters to their first coordinate.

Language characterization of MSO. When proving Theorem 6.1, we want
to avoid formulas of logic, so that we do not have to talk about free variables
and other nuisances. That is why we state below a characterization of MSO
that is purely in terms of languages.

Lemma 6.2 Languages definable in nominal MSO are included2 in the small-
est class of languages that contains languages recognized by orbit-finite nominal
monoids, is closed under boolean combinations and images under fiber bounded
morphisms.

Proof (of Lemma 6.2)
The same proof as in the case of finite alphabets, see e.g. [14]. First, we eliminate
first-order quantifiers from the language, by adding a subset predicate X ⊆ Y
for set variables, and replacing every k-ary predicate R by a set version

R′ = {({x1}, . . . , {xk}) : (x1, . . . , xk) ∈ R}.

The resulting logic has the same expressive power, and it does not use first-
order variables. Next, we show how a formula with free variables can be treated
as a language. For a word w ∈ A∗ and a set of X of positions in w, define
w ⊗ X ∈ (A × 2)∗ by extending the label of each position with a bit, which
says if the position belongs to X. The language of a formula ϕ(X1, . . . , Xn) is
defined as

Lϕ = {w ⊗X1 ⊗ · · · ⊗Xn : w,X1, . . . , Xn |= ϕ} ∈ (A× 2n)∗.

2The inclusion is strict. Consider the language described in Section III.A of an unpublished
manuscript, http://www.mimuw.edu.pl/ bojan/papers/atomturing.pdf. This is an example
of a language that is not definable in nominal MSO (because it is not even recognised by a
deterministic Turing machine with atoms, and the machines are more powerful than nominal
MSO), but which is an image, under a fiber bounded morphism, of a language definable in
nominal MSO (because having an even number of conflicts, as defined in the manuscript, is
definable in nominal MSO).
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Under this interpretation, we see that the existential set quantifiers (boolean
combinations, respectively) on the side of formulas correspond to morphic im-
ages (boolean combinations, respectively) on the side of languages. The mor-
phisms are fiber bounded, because they simply remove one 2 component from
the alphabet (i.e. the alphabet is halved).

It remains to show that the languages in the induction base, which corre-
spond to predicates, are recognized by orbit-finite nominal monoids. Consider
the language that corresponds to a formula

R′(Xi1 , . . . , Xin),

which uses the set version R′ of a predicate R. When R is the order predicate on
positions, then the monoid is simply finite. When R is obtained from a nominal
relation R ⊆ Ak, we use the following monoid MR to recognize the language that
corresponds to the relation R′. Elements of the monoid are partial functions

η : {1, . . . , k} → A,

plus an additional zero element 0. The zero element is used for words where the
sets Xi1 , . . . , Xin are not singletons. The monoid operation is defined by

η1η2 =

{
η1 ∪ η2 if η1, η2 are not 0 and have disjoint domains
0 otherwise

The monoid identity is the completely undefined partial function. It is easy to
see that the monoid is orbit-finite. We now give a monoid morphism

αR : (A× 2k)∗ →MR

which recognizes the predicate R. A word

a1 · · · an ⊗X1 ⊗ · · · ⊗Xn

is mapped by αR to 0 if one of the setsX1, . . . , Xn contains at least two positions.
Otherwise, the word is mapped to the partial function

η(i) =

{
aj if Xi = {j}
undefined otherwise.

�

Example 4. We show in this example that it is important to consider images
under fiber bounded morphisms, because other morphisms can lead to monoids
that are not locally finite. Consider the language

L = {d1 · · · dk : d1, . . . , dk ∈ D are pairwise different and k is prime} ⊆ D∗.
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The syntactic monoid of this language contains all infixes of words in L as
distinct elements, and a special zero element for all other words. The monoid
is locally finite, because it satisfies the following property:

m1 · · ·mk = 0 whenever mi = mj for some i < j.

In particular, for a given set X of generators, the number of elements in the
monoid generated by X is bounded by the number of words over X that use
each letter at most once.

Consider now the morphism f : D∗ → a∗ which replaces all letters by a.
This morphism is not fiber bounded, because the inverse image of a is D. The
image of L under f is the set of words of prime length. The syntactic monoid
of that language is not locally finite, because it is finitely generated by {a} and
infinite.

�
We now prove Theorem 6.1. By Lemma 6.2, it is enough to prove that the

syntactic monoids of the class of languages in the lemma are locally finite. We
first show two operations on monoids that correspond to boolean combinations
and fiber bounded morphisms, respectively.

Monoid operations. The first operation is Cartesian product M × N . It is
easy to see that the Cartesian product of two nominal monoids is also monoid.
The second operation is the finite powerset construction, which defines a monoid
Pfin(M) based on a monoid M . Elements of Pfin(M) are finite subsets of M .
The monoid operation is defined pointwise, by

XY = {xy : x ∈ X, y ∈ Y } for X,Y ⊆M.

It is easy to see that Pfin(M) is nominal if and only if M is nominal. The
following straightforward lemma, which is given without proof, shows that the
monoid operations above capture the language operations from Lemma 6.2.

Lemma 6.3 Let L,K be languages, recognized by monoids M,N respectively.

• Any boolean combination of L and K is recognized by the product M ×N .

• Any fiber bounded projection of L is recognized by Pfin(M).

A corollary of Lemmas 6.2 and 6.3 is that every language definable in MSO
is recognized by a monoid from the least class of monoids that contains orbit-
finite monoids and is closed under Cartesian products and finite powersets. By
Theorem 5.1, all orbit-finite nominal monoids are locally finite. In Lemmas 6.4
and 6.5 below, we show that locally finite monoids are closed under Cartesian
products and finite powersets, respectively. It follows that every language de-
finable in MSO is recognized by a locally finite monoid. Finally, by Lemma 6.6
below, and Lemma 3.4, it follows that the syntactic monoid of every language
definable in MSO is locally finite.

Lemma 6.4 If monoids M1,M2 are locally finite, then so is M1 ×M2.
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Proof
Let X be a finite subset of M1 ×M2. For i ∈ {1, 2} let Ni be the submonoid of
Mi generated by the projection of X to the i-th coordinate. By assumption on
M1,M2 being locally finite, the submonoids N1, N2 are finite. The submonoid
generated by X in M1×M2 is a subset of N1×N2, and therefore it is also finite.
�

Lemma 6.5 If monoid M is locally finite, then so is Pfin(M).

Proof
Let X be a finite set of elements in Pfin(M). Let X be the union

⋃
X , which is

a finite set, because it is a finite union of finite sets. Let N be the submonoid
of M that is generated by X. By local finiteness of M , the monoid N is finite.
Let N be the submonoid of Pfin(M) generated by X . By induction one shows
that every element of N is a subset of N . By finiteness of N , there are finitely
many elements in N . �

Lemma 6.6 Let α : M → N be a surjective monoid morphism. If M is locally
finite, then so is N .

Proof
Let X be a finite subset of N . Using surjectivity, choose a finite subset Y of M
such that α(Y ) = X. By local finiteness of M , the monoid generated by Y in
M is finite; and therefore so is its image in N , which is the same as the monoid
generated by X in N . �

7 Green’s relations for nominal monoids

In this section we recall Green’s relations. Suppose that M is a nominal monoid.
Using the underlying monoid, one can define Green’s relations on elements
m,n ∈M .

• m ≤L n if Mm ⊆Mn

• m ≤R n if mM ⊆ nM

• m ≤J n if MmM ⊆MnM

We sometimes say that n is a suffix of m instead of writing m ≤L n. Likewise for
prefix and infix, and the relations ≤R and ≤J . Finally, we use the name exten-
sion for the converse of infix. Like in any monoid, these relations are transitive
and reflexive, so one can talk about their induced equivalence relations, which
are denoted by L, R and J . Equivalence classes of these relations are called
L-classes, R-classes and J -classes. An H-class is defined to be the intersection
of an L-class and an R-class.

It is easy to see that Green’s relations are nominal relations, with their
support being the support of the monoid. The following lemma3 shows that

3As pointed out by one of the anonymous referees, every locally finite monoid is group
bound, which implies Lemma 7.1. See e.g. [8].
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two key properties of Green’s relations work in all locally finite monoids, which
covers the case of orbit-finite nominal monoids thanks to Theorem 5.1.

Lemma 7.1 The following properties hold in every locally finite monoid M .

• If n J m and m ≤R n, then m R n. Likewise for L.

• If M is aperiodic, then m L n and m R n imply m = n.

Proof
It is well known that the properties above hold in finite monoids.

Consider the first property. By the assumptions, there exist elements x, y, z ∈
M such that

m = nx n = ymz.

Consider the submonoid N ⊆ M that is generated by {n,m, x, y, z}. This
monoid is finite by the local finiteness assumption. In the submonoid N , the
assumptions n J m and m ≤R n are also satisfied, and therefore so is the
conclusion m R n. This means there is some x′ ∈ N with n = mx′. Because x′

belongs also to M , it follows that n R m holds in M .
The same argument works for the second property. �

8 First-order definable functions

In this section, we define when a partial function

f : A∗ → B

is first-order definable, when A and B are nominal orbit-finite sets. We will use
first-order definable functions as a technical tool in the proof of our characteri-
zation of first-order logic. Before defining the notion, we present some examples
of functions that will turn out to be first-order definable.

Example 5. B = 2 and f says if some data value appears twice. More
generally, the characteristic function of any first-order definable language is a
first-order definable function, see Lemma 8.1. �

Example 6. B = A and f returns the first letter. This is a partial function,
because f is undefined on the empty word. Unlike in Example 5, the output
set is infinite, and therefore f cannot be described just by using sentences of
first-order logic. �

Example 7. B is the family of two element subsets of A, and f returns the
unordered set containing the first and last letters. Again, f is a partial function.
�

In the classical setting, where orbit-finite alphabets are simply finite, the
notion of first-order definable function is just syntactic sugar on top of first-
order definable languages. This is because a function f : A∗ → B can be
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described as finite set of sentences {ϕb}b∈B , such that ϕb defines the language
f−1(b). However, when orbit-finite sets are actually infinite, the ability to return
letters and data values becomes important. In Section 8.1, we come back to the
idea of representing a function as a set {ϕb}b∈B .

Definition of first-order definable functions. The class of first-order de-
finable functions is defined below.

• Boolean properties. Suppose that ϕ is a first-order sentence. Then the
characteristic function f : A∗ → 2 is a first-order definable function.

• Letter selection. Suppose that ϕ(x) is a first-order formula with one
free variable. Then the function f : A∗ → A, which maps a word w to the
label of the first position selected by ϕ(x), is first-order definable. The
function f is partial, because in some words no position is selected by
ϕ(x).

• Product and case. If functions f : A∗ → B and f : A∗ → C are
first-order definable, then so are their product and sum

(f, g) : A∗ → B × C w 7→ (f(w), g(w))

f else g : A∗ → B ∪ C w 7→

{
f(w) if f(w) defined
g(w) otherwise

The product (f, g) is defined whenever both f and g are defined.

• Information loss. If the function f : A∗ → B is first-order definable, and
g : B → C is any nominal function, then the composition f ; g : A∗ → C
is also first-order definable.

Observe that the codomain of every first-order definable function is orbit-finite.
This is because orbit-finite sets are preserved under Cartesian products (an
assumption that we made on the data symmetry), and under images of nominal
functions (true in any data symmetry).

It is easy to see that all the examples from the beginning of this section
are first-order definable. Consider the function from Example 7. We use the
product of two letter selectors to define a function h : A∗ → A2, which maps a
word to the ordered pair of its first and last letters. Then, we use information
loss to forget the order in the pair.

Lemma 8.1 A language L ⊆ A∗ is first-order definable if and only if its char-
acteristic function fL : A∗ → 2 is first-order definable.

Proof
The left-to-right implication is by definition of first-order definable functions.
The right-to-left implication is by substituting formulas of first-order logic. �
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8.1 Formulas as a nominal set

In this section we conjecture that first-order definable functions have a more
elegant description than the one presented in the previous section.

Recall that the predicates in nominal first-order logic are obtained from nom-
inal subsets R ⊆ An (except for the order relation). Suppose that the alphabet
A has support C, i.e. one can use GC to act on elements of A. Extending this
action coordinatwise to An, and then pointwise to subsets of An, we can apply
any permutation π ∈ GC to a nominal relation R ⊆ An, and get a new nominal
relation Rπ ⊆ An. We can then extend this action of GC , by simple structural
induction, to all formulas of nominal first-order logic, so that a permutation
π ∈ GC maps one formula ϕ to another formula ϕπ. It is easy to see that the
set of formulas of nominal first-order logic is also a nominal set, with support
C. Call this set FOA.

We conjecture that a function f : A∗ → B is first-order definable if and only
if there is a set of sentences {ϕb}b∈B , such that

• For every b, the sentence ϕb defines the language f−1(b); and

• The correspondence b 7→ ϕb is a nominal function from B to FOA.

The advantage of this alternative characterization, if it is indeed true, is that it
is shorter, more similar to the classical case, and it can easily be generalized to
other logics, such as MSO or two-variable FO.

9 First-order logic

In this section we prove the main result of the paper, Theorem 9.1, which is
an effective characterization of first-order logic in terms of aperiodic monoids.
In the theorem, we talk about the J -order, which is the relation ≤J lifted to
J -classes.

Theorem 9.1 Let L be a nominal language, and let ML be its syntactic monoid.
Assume that ML is orbit-finite and has a well-founded J -order. Then L is
definable in first-order logic if and only if ML is aperiodic.

Lemma 9.2 shows that the easier implication holds even without the assump-
tions on orbit-finiteness and well-foundedness.

Lemma 9.2 If L is definable in first-order logic, then ML is aperiodic.

Proof
This proof is the same as in the classical case, without data values.

Suppose that L is defined by a sentence ϕ of first-order logic. Let i be a
number which is sufficiently large with respect to the quantifier rank of ϕ. Using
an Ehrenfeucht-Fräıssé game, one shows that for every all u,w, v ∈ A∗,

uwiv |= ϕ iff uwi+1v |= ϕ. (1)
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The above says that for every word w ∈ A∗ and sufficiently large i, the words wi

and wi+1 are equivalent under the two-sided Myhill-Nerode equivalence relation.
Since the syntactic monoid consists of these equivalence classes, it is aperiodic.
�

In Section 9.1, we show the more difficult implication: if ML is aperiodic
then L is first-order definable. First, we give examples which illustrate the as-
sumptions in the theorem. Both examples show syntactic monoids where the
J -order is not well-founded. It could be the case that if a syntactic monoid
is aperiodic and has a well-founded J -order, then it is orbit-finite. In particu-
lar, in Theorem 9.1, it could be that the assumption on orbit-finiteness is not
necessary4.

Example 8. Consider the total order symmetry, and the language of words
with an even number of growing data values

L = {d1 · · · d2n : n ∈ N, d1 < d2 < · · · < d2n} ⊆ D∗.

The syntactic monoid ML of this language is

{0, 1} ∪ D ∪ {(d, e, i) ∈ D2 × 2 : d < e}

where 0 stands for words outside L, 1 stands for the empty word, d stands for a
single-letter word, and (d, e, i) stands for a word that begins with d, ends with e,
and its length modulo 2 is i. This monoid is orbit-finite. However, the monoid
fails the assumption on the J -ordering being well-founded, as witnessed by the
following infinite decreasing sequence

(−1, 1, 0) >J (−2, 2, 0) >J (−3, 3, 0) >J · · ·

That is why the implication in the theorem fails: the monoid is aperiodic, but
the language L is not definable in first-order logic. �

Example 9. Let A be an infinite but orbit-finite alphabet, e.g. D in the
equality symmetry. Consider the set of words where the number of distinct
letters is even. The syntactic monoid of this language is the family of finite
subsets of A, with union as the monoid operation. The monoid is aperiodic
(and therefore a language that talks about parity can have an aperiodic syntactic
monoid). However, the monoid is not orbit-finite, because subsets of different
sizes are in different orbits. Also, the J -order is not well-founded (because the
J -order is the superset relation, which is not well-founded). 5 �

Observe that in Example 8 we used the total order symmetry, and not the
simpler equality symmetry. Indeed, it is impossible to provide an example that
uses the equality symmetry, as shown by the following lemma.

4I would like to thank an anonymous reviewer for pointing this out.
5A previous version of this paper claimed that the monoid has a well-founded J -order.

This error was pointed out by the anonymous referee. I am not aware of a syntactic monoid
that is aperiodic, not orbit-finite, but has a well-founded J -order.
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Lemma 9.3 In the equality symmetry, the J -order is well-founded in every
orbit-finite monoid.

Proof
Consider an orbit-finite monoid M . Suppose that there is an infinite decreasing
chain

m1 >J m2 >J m3 >J · · ·

Let C be a support of M . Because the monoid is orbit-finite, there must be
some i < j such that mi is in the same orbit as j, with respect to GC . We will
show that mi and mj are in the same J -class, contradicting the assumption on
the decreasing chain.

Because mj comes later in the chain than mi, there must be elements x, y ∈
M such that

mj = xmiy.

Because mi and mj are in the same orbit, there must be some π ∈ GC such
that mi = mjπ. Choose π so that, as a permutations on data values, it is the
identity on all but a finite set of data values. This can be done in the equality
symmetry, but not in other symmetries, such as the total order symmetry. By
the assumption that the monoid operation is nominal, we see that

mi = mjπ = (xmiy)π = (xπ)(miπ)(yπ).

Apply the above equation to itself k times, yielding

mi = (xπ)(xπ2) · · · (xπk−1)(xπk)(miπ
k)(yπk)(yπk−1)s(yπ2)(yπ).

Because the permutation π is the identity on almost all data values, then πk is
the identity for some k > 0. It follows that

mi = (xπ)(xπ2) · · · (xπk−1)(xmiy)(yπk−1) · · · (yπ2)(yπ),

which means that mj = xmiy is an infix of mi, and therefore mi is J -equivalent
to mj .

Observe that we have proved a slightly stronger result: if a permutation
from GC can map one J -class to another, then the J -classes are either equal
or incomparable in the J -ordering. �

9.1 From aperiodic to first-order definable

In this section we finish the proof of Theorem 9.1, by showing the more difficult
implication: if ML is aperiodic then L is first-order definable. The proof is an
induction, which needs a more detailed statement, as presented below.
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Proposition 9.4 Consider a nominal monoid morphism α : A∗ → M into a
nominal monoid M that is orbit-finite and aperiodic. Let X ⊆M be a nominal
subset that is upward closed under ≤J . Then the partial function αX , which is
α with domain restricted to X, is first-order definable.

Let C be a set that supports both M and X. The proof is by induction on
the number of orbits in X, under the action of the group GC . The base of the
induction is when there are zero orbits, in which case the function αX is easy
to define.

Because X is upward closed under ≤J , then it is a union of J -classes.
Choose a J -class J ⊆ X that is minimal under the J -order, which is possible
by the assumption that the J -order is well founded. Let Y be the closure of J
under the action of GC , i.e.

Y =
⋃
m∈J

mGC .

Because X is supported by C, it follows that Y ⊆ X. Consider the set Z =
X−Y , which is also supported by C. The sets X,Y, Z are illustrated in Figure 2.

Figure 2: The sets Y and Z, which partition X. The J -order is oriented
vertically in the picture, with smaller elements at the bottom.

Lemma 9.5 The set Z is upward closed under ≤J .

Proof
Suppose that n ∈ Z and n ≤J m. Because X is upward closed, it follows that
m ∈ X. Suppose, for the sake of contradiction, that m 6∈ Z. Then m ∈ Y , and
by definition of Y , there must be some π ∈ GC such that mπ ∈ J . Because the
order ≤J has support C, we can multiply both sides of n ≤J m by π, yielding

nπ ≤J mπ.

Because n belongs to Z, and Z is supported by C, it follows that nπ belongs to
Z, and therefore nπ cannot belong to J , which is included in Y . This contradicts
the assumption that mπ belongs to a minimal J -class in X. �
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Thanks to Lemma 9.5, we can apply the induction assumption to Z, yielding
a function αZ that is first-order definable. The rest of this section is devoted to
extending the function from Z to X = Y ∪ Z

For a word w ∈ A∗, we use the name type of w for α(w). Define Rw to be
the R-class of the shortest prefix of w with type outside Z. Likewise, define Lw
to be the L-class of the shortest suffix of w whose type is outside Z. Both Rw
and Lw might be undefined, if the appropriate prefixes or suffixes do not exist.

Lemma 9.6 The partial function

g : A∗ →M/R×M/L g(w) = (Rw, Lw)

is first-order definable. Its domain is the set of words with type outside Z.

Proof
Suppose that a word w has type in Z. Because the J -class of an infix decreases
as the infix grows, and because Z is upward closed under the J -ordering, it
follows that all infixes of w have type in Z. Therefore, g is undefined on w.

Consider now a word w with type outside Z. Let u1 be the longest prefix of
w with type in Z. Let a1 be the next letter after u1 in w. By choice of a1, we
have that Rw is the R-class of u1a1. Likewise, let u2 be the shortest suffix of w
with type in Z, and let a2 be the letter that precedes u2 in w. Again, Lw is the
L-class of a2u2.

Using the induction assumption, one shows that the partial function

h : A∗ → Z ×A×A× Z h(w) = (α(u1), a1, a2, α(u2))

is first-order definable (it is defined if and only if the type of w is outside Z). By
composing the function with the monoid operation, and the nominal functions

m 7→ [m]L m 7→ [m]R

we conclude that the function g itself is first-order definable. �

Because Rw is an R-class, and Lw is an L-class, and because the monoid M
is aperiodic, it follows from the second item of Lemma 7.1 that the intersection
Rw ∩ Lw contains at most one element. This is the only place where we use
the assumption that M is aperiodic. Consider the following partial function
f : A∗ →M .

f(w) =


αZ(w) if (Rw, Lw) is undefined and therefore αZ(w) is defined
m if (Rw, Lw) is defined and Rw ∩ Lw = {m}
undefined otherwise, i.e. if (Rw, Lw) is defined and Rw ∩ Lw = ∅

The partial function f is first-order definable, because first-order definable func-
tions allow a case distinction.

Lemma 9.7 If w has type in X, then that type is f(w).
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Proof
Because X is partitioned into Y and Z, we consider two cases.

If w has type in Z, then the result follows from the definition of f .
Suppose that w has type in Y . In this case, Rw and Lw are defined. Let u

be the shortest prefix of w with type outside Z, this is the word whose R-class
is Rw. Because u is a prefix of w, we have

α(u) ≥R α(w).

Because the type of u is not in Z, then it must be in Y . By the first item of
Lemma 7.1, it follows that

α(u) R α(w)

and therefore the R-class of w is Rw. In the same way, we show that the L-class
of w is Lw. It follows that the intersection Rw ∩Lw is nonempty, as it contains
the type of w, and therefore Rw ∩ Lw = {α(w)}. �

Lemma 9.8 The set of words with type in Y is first-order definable.

Proof
Because Y is X − Z, and we already have a formula for words with type in Z,
it suffices to define words with type in X. We will define the complement of X,
i.e. the words that have type outside X. Consider the following set K of words

K = ∪

{
{ua : u ∈ A∗, a ∈ A, f(u) is defined and f(u)α(a) 6∈ X}
{au : u ∈ A∗, a ∈ A, f(u) is defined and α(a)f(u) 6∈ X}

.

Because it is defined in terms of the function f , the setK is a first-order definable
language. We claim that a word w has type outside X if and only if it has an
infix from K, the latter being a first-order definable property.

For the right-to-left implication, observe that all words in K have type out-
side X, and therefore also all words that contain an infix from K.

For the left-to-right implication, observe that the complement of X is down-
ward closed in the J -order, by assumption on X being upward closed. There-
fore, a word has type outside X if and only if it has an infix outside X. If we
choose the infix to have minimal length, then removing the first or last letter of
the infix gives a word in with type in X, for which we can use Lemma 9.7. This
infix is the word u in the definition of K. �

We now conclude the proof of the induction step in Proposition 9.4. We
need to define the function αX . This is the disjoint union of the functions αY
and αZ . The latter function is defined by induction assumption. The former
function is the restriction of f to the set of words with type in Y , by Lemma 9.7.
By Lemma 9.8, this restriction can be done in first-order logic.
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10 Further work

Characterize other logics. It is natural to extend the characterization of
first-order logic to other logics. Candidates that come to mind include first-
order logic with two variables, or various logics inspired by XPath, or piece-
wise testable languages. Also, it would be interesting to see the expressive
power of languages recognized by orbit-finite nominal monoids. This class of
languages is incomparable in expressive power to first-order logic, e.g. the first-
order definable language “some data value appears twice” is not recognized by
an orbit-finite nominal monoid. It would be nice to see a logic, maybe a variant
of monadic second-order logic, with the same expressive power as orbit-finite
nominal monoids.

Use mechanisms more powerful than monoids. As language recognizers,
orbit-finite nominal monoids are very weak. In most data symmetries, such
as the equality and total order symmetries, orbit-finite nominal monoids are
strictly less expressive than orbit-finite deterministic automata6. For example,
the language “the first letter in the word appears also on some other position”,
is recognized by an orbit-finite deterministic automaton, but has a syntactic
monoid with infinitely many orbits. Therefore, one can ask: is it decidable if an
orbit-finite automaton recognizes a language that can be defined in first-order
logic? We conjecture that this problem is decidable, and even that a necessary
and sufficient condition is aperiodicity of the syntactic monoid (which need not
be orbit-finite).
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