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Abstract. An infinite binary word can be identified with a branch in thé fiinary tree. We consider
sets of branches definable in monadic second-order logictbgdree, where we allow some extra
monadic predicates on the nodes. We show that this clasdseigutne Boolean combinations of
sets in the Borel clask! over the Cantor discontinuum. Note that the last coincidiéfs tie Borel
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1. Introduction

It is well known that a great part of automata theory extenggeqvell from words to trees. But, not
surprisingly, the analogous results become often morecdiffin the tree case, as trees have a richer
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structure than words. A celebrated example is decidalafi§ks, i.e., the monadic second order (MSO)
theory of the fullk-ary treety, = ({1,...,k}*, succ,...,succy), wheresucc;(w) = wi. Rabin’s
proof [10] for £ > 2 needed an essentially new insight into the subject, althauguilt on an idea
of reducing formulas to automata, previously used by Biichiis proof of decidability of S1S. The
increase of conceptual difficulty is also reflected by the potational complexity of the related decision
problems. For example, the non-emptiness problem for aatfowith the Rabin acceptance criterion
over infinite words is in P, while the analogous problem feetris NP-complete [4].

A good context where the two kinds of objects can be comparéapology. Indeed both trees and
words can be naturally represented as elements of the Gistontinuuny 0, 1}. Then the complexity
of respective concepts is compared in the frame of the cladsierarchies of set-theoretic topology. For
instance, finite-state recognizable sets of infinite wordskaown to be on the 3rd level of the Borel
hierarchy, more precisely they are Boolean combinatiorsets inx9 [7] (see also [14]). In contrast,
finite-state automata on infinite trees can recognize sonmel Bets on any finite level [12], as well as
some non-Borel sets iA} [9].

In this context, we consider the following question. Sincei@finite word « over an alphabet
{1,...,k} can be represented as a branch ih-ary tree, it is possible to define a language of infi-
nite words by an MSO formula with one free set variable intetgx in the structuréy, as the set of
prefixes ofa. It is easy to see that a language definable that way mustiegular, i.e., recognizable
by a Buchi automaton. This of course need not be the case é@tend the tree structutg. by some
additional monadic predicates. Recently, Barany, Kaeed Rabinovich [1] considered languages de-
finable in that way in context of an uncountability quantifeer trees, and discovered that they are
always Borel. In the present paper we show that these laeguafgnfinite words have the same Borel
complexity asu-regular languages, that is, they are in the claasie (23) of the Boolean combinations
of sets inx. Moreover, if we range over all possible predicates, thguages in consideration exhaust
the whole clasBoole (X9).

To this end, we observe that our languages can be capturedrbgiaterministic automata with the
Biichi acceptance condition, additionally equipped withadvicetelling which transitions are recom-
mended after reading a finite prefix of an infinite word. We nibig a similar concept of automata
recognizing languages fihite words has been recently considered by Fratani [5] who sh@ameahal-
ogous characterization for languages of finite words delinabtree structures. A useful property is
the determinization result which, for infinite words, is Engmus to the McNaughton Theorem [8] for
the ordinary Bichi automata: the automata with advice @amhde deterministic if we replace Biichi
condition by some more general acceptance criteria, likg#rity acceptance condition (see also [14]).

To complete the proof we note that the languages recognigealitomata with advice are closed
under continuous reductions. As they also form a Booleagbafyand contaii-complete sets (which
is well-known already for the ordinary-regular languages), we obtain the desired charactarizati

Finally we note that the MSO definability of sets of infinite nde in ak-ary tree with predicates
cannot be reduced to definability in the struct{ge succ ) (i.e., the underlying structure of S1S) with
additional predicates; we exhibit a language definablearfdhbmer sense but not in the latter.

For simplicity, we present our proofs for binary trees; ateegion of the results tb-ary trees, for
k > 2, is routine.
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2. Borel complexity of Blchi automata with advice

In this section, we consider an extension of non-deteriénB&iichi automata on infinite words by the
concept of advice, and show that the topological complexitthe recognized languages is the same as
for ordinary Buchi automata.

Topological preliminaries Throughout the papex; denotes the set of natural numbers which we iden-
tify with the first infinite ordinal. (Thus the writings < w andn € w are equivalent.) For a séf, X*
denotes the set of finite words ouEr, including the empty word, and X“ the set of infinite words, i.e.,
mappingsy — X. When applied to words, the symbeldenotes prefix ordering. The length of a finite
word w is denoted byw|. Them-th letter of a wordu € X* is denotedu(m) or u,, interchangeably.
The prefix of lengthm of a wordw will be denotedu | m, that is

ulm=u(0)u(l)...u(m—1) =upuy ... Un_1,

(in particular,u | 0 = €). determined by the context. We considér with a topology induced by the
metric given by the distance function

d(u, ) = { 0 if u=1 )

27" with n = min{s : u(i) # «/(¢)} otherwise.

Note that the open sets are of the fornX«, for some set of finite wordd” C X*. Itis easy to see that
if X isfinite and contains at least two elements théf is homeomorphic with th€antor discontinuum
{0,1}. (For the concepts of set-theoretic topology, see, e.h), [6

We use the notatiol? andIT?, with 1 < n < w, for finite levels of the Borel hierarchy over
{0,1}*. That is,x{ andII{ are classes of open and closed sets, respectively. Béxt, consists of
countableunions of sets iI), andII}_, consists of countable intersections of set&i) Note that

the sets iM12 are complements of the setsXif.

2.1. Advised automata

A Buchi automaton on infinite words over an input alphategn be presented & = (A, Q, g1, F, Tr),
where( is a finite set ofstateswith aninitial state g; and a subset odiccepting stateg” C (@, and
Tr C Q x A x @ is a set of (non-deterministidjansitions We writeq % p to mean(q, a,p) € Tr.
A run of B on awordu € A“ is a wordr € Q¥ such thatrg = ¢z, and, form < w, r,, —% 1. It
is accepting ifr,, € F, for infinitely many values ofn. The languagd.(B) recognized by3 consists
of those words: € A which have an accepting run. Languages of infinite wordsgeized by Biichi
automata are called-regular.

We now generalize the above concept of automata, so thatathsitton relation will depend on the
prefix of a word read so far. We note that a similar concept tdraata running on finite words has been
considered by Séverine Fratani [5] (calladtomatesa oraclesthere) in the context of automata with
nested pushdown stores.

A non-deterministic Bichautomaton with advicéor advised automatgrcan be presented iy =
(A,Q,q1, F,p), whereQ, qr, andF' are as above, and: A* — p(Q x A x Q) is the advice function
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which associates a set of transitions with each finite wort dv We writev, ¢ — p to mean(q, a, p) €
p(v). Arun of Bonawordu = ugu; ... € A% is awordr € Q“ such that, = ¢z, and, form € w,

Um
Uy - - Un—1yTm — T'm+1-

The concept of acceptance is defined similarly as in the pusvtase. An ordinary Biichi automaton as
presented above can be viewed as an automaton with advioed &fy

p(w) = Tr, forw e A*.

Parity automata An ordinary (non-deterministicparity automatoh differs from a Biichi automaton
only by the acceptance condition which, insteadrgttakes form of aanking function rank : Q — w.
A run r is considered accepting if the highest rank occurring itdipioften iseven in other words,
lim sup,,_, ., rank(r,) is even. Note that a Buchi automaton can be viewed as a @arigmaton with
rank(q) = 2, for ¢ € F, andrank(q) = 1 otherwise.

A parity automaton with advices defined analogously to the Blichi automaton, with the ptecee
given in terms of the ranking function.

It is well known that non-deterministic parity automata eqtconly w-regular languages. We note
that a straightforward transformation from parity to Bi@titomata applies also to automata with advice.

Lemma 2.1. For any parity automaton with advice, there exists a Bugtdmaton with advice accepting
the same language.

Proof:
Let B = (A, Q,qr, rank, p), and suppose thatnk takes the values if0, 1,...,m}. We construct a
Buichi automator3’ with the set of states

QU U {q : rank(q) < 2i} x {i}.

2i<m

The initial state remaing;, and the accepting states dre= {(q, ) : rank(q) = 2i}. The advise of3’
is given by the following rules:

e v,p 5 ¢, whenever it was the case B
e v,p 5 (q,i), whenevew, p % qin B, andrank(q) < 2i,
e v,(p,i) = (q,i), wheneven,p % ¢ in B, andrank(q) < 2i.

Intuitively, in some moment of the computation, the autandidecides” that the highest rank to occur
infinitely often should be&i. Since that moment on, the automaton cannot enter the stétesigher
rank, and it accepts if the rari¥ occurs infinitely often. The equivalence Bfand 5’ follows readily
from the definition. O

1Currently most frequently used in the literature, the gaxitceptance criterion is well-known to be equivalent tdiseorically
previous Muller and Rabin criteria, see [14].
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Determinization An ordinary Biichi automaton deterministidf 7r represents a function fro x A

to Q; that is, for eacly anda, there is exactly ong, such thay = p. Itis easy to see that Biichi automata
cannot, in general, be determinized, but from the celetbrikteNaughton Theorem [8], we know that
any Buchi automaton is equivalent to a deterministic awatimm with parity condition; an elegant and
optimal construction has been provided by Safra [11] (see [d4]).

By analogy, an advised automaton is deterministic if ea@l) is a function from@ x A to Q;
consequently, for each, a, andv, there is exactly one, such thatv,q — p. As for the ordinary
automata, this guarantees that the automaton has exaetljuaron each word € A“. In particular,
for eachv € A*, there is exactly one state, s@y(v), which the automaton reaches after reading
starting from the initial state. This leads to a simpler preation of deterministic automata: instead
of p : A* — p(Q x A x Q), we can consider the functignt : A* — @ defined above that we call
state-advice Indeed, the function’ fully determines the language recognized by the automat®m
word u is accepted if and only if the sequendéu | n), n < w, forms an accepting run. On the other
hand,anyfunction f : A* — @ is a state-advice of some automaton, it is enough to let

v, f(v) = f(va)

(transitions forg # f(v) may be defined arbitrarily). Since now on, we usually presetérministic
automata by state-advices.

We now show that the determinization result carries oveutoraata with advice. A similar results
for languages of finite words has been shown by Fratani [5].

Proposition 2.1. For any advised Buichi automaton, there is a deterministidgsad parity automaton
accepting the same language.

Proof:

LetB = (A, Q,q1, F, p) be a non-deterministic Biichi automaton with advice. Wetkay an infinite
worda € p(Q x A x Q)¥ favoursan infinite wordu = ugu; ... € A%, whenever there exists a sequence
of statesyg, ¢1, . . ., such that

1. q0 = ai,
2. (Gn, Un, Gn+1) € ay, foralln < w,
3. q, € F, for infinitely manyn’s.
For anyu € A¥, let p(u) be an infinite word over the alphabget@ x A x Q), defined by
p(u)(n) = p(uln).

Note thatu is accepted bys if and only if p(u) favoursu.

Foranyu € A¥ anda € p(Q x A x Q)“, letu*a be the word over the product alphabek o(Q x
A x @), defined by
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The crucial property is that the set
{uxa: afavoursu}

is w-regular in the usual sense. Indeed, a suitable non-detistiniBichi automaton (over the alphabet
A X p(Q x A x @Q)¥) can borrow®, F', andg; from 5, and assume the transitions

(a,R)
q —D,

whenever(q, a,p) € R. By the McNaughton Theorem, there is an equivalent detéstitrautomaton
with parity condition, say\. We are ready to define a deterministic advised parity automr@cogniz-
ing L(B). Its set of states and ranking function are the same a4 ifThe state-advice sends each finite
word ugus . . . u, 0N the unique state that the automagohreaches after reading the word

(uo, p(e)), (u1, p(uo)), (uz, p(uous)), - . ., (un, p(uous - . . up—1))

(the empty word is sent on the initial state 0¥1). Hence the run this automaton assumes on an infinite
word u € A“ coincides with the run of the automatavl onu x p(u). But M acceptsu x p(u) if and
only if B acceptsu. O

Note that, by the above proof, the increase of the numberatéstinduced by determinization is the
same as in the classical construction.

Borel complexity We first note that automata with advice are not more powehah tordinary au-
tomata as far as the Borel complexity is concerned. Indegd3 be a deterministic parity automaton
with a state-advice : A* — @, and a ranking functiomank : Q@ — {0,1,...,m}. Let us abbrevi-
atem = {0,1,...,m}. We can simplify the automaton further, by takingas the set of states with
rank (i) = i, and the state-advice given bynk o p; clearly the new automaton is equivalent to the
previous one. This further induces a continuous (even hitgcmapping fromA“ to m*

u— rank(p(u [ 0)), rank(p(u | 1)), rank(p(u | 2)), ...

Clearly the setl,(B) is an inverse image under this mapping of the set of strintisfgag the parity
criterion

Parity,, = {a € m® : limsup oy, is even}.
n—oo
The last set is a Boolean combination of sets defined by theitomms “; occurs only finitely often”, and
hence is in the Boolean closure of the Borel cl&s (This also follows from the Landweber bound on
the w-regular languages [7].) Hence, any set of infinite wordegeized by a non-deterministic parity
automaton with advice has at most this Borel complexity.

It turns out that the converse is also true.

Theorem 2.1. A languagel C A“ is presentable as a Boolean combination of setSJrif and only
if it is recognized by a deterministic parity automaton wéithvice, and consequently also by a (non-
deterministic) Blchi automaton with advice.
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Proof:
Theif implication has been observed above. To showotilg if part, we will use deterministic automata
with the states coinciding with their ranks. A state-adw€¢he formp : A* — m may be viewed as a
coloring of the treed* by the ranks irm. Therefore, for the sake of this proof, we call the set recamgh
an automaton eainbow. The strategy of the proof is to show that rainbows comphisenthole clasE)
and are closed under Boolean operations.

We first show that each continuous reduction induces a rainbo

Lemma2.2.Let f : AY — m“ be a continuous function and = f~!(Parity,,). ThenK is a
rainbow.

Proof:
Forw € A*, let f(w) be the largest common prefix of the words{ifi(wu) : u € A“}. Note that it can
be finite or infinite (if the prefixv determines the value ¢f). It follows from continuity of f that, for
anyu € A%, the sequence of Iengthﬁ(u I n)| diverges to infinity (it may also reach it, for somg.
Hence there is a unique infinite word having All. | n)’s as prefixes, which must b&«).

To define a state-advigefor an automaton recognizinky, we proceed by induction on the length of
an argumento. Let p(c) = 0. Forw > &, we consider two cases. fi(w) is an infinite word, we let

p(w) = limsup f(w)(n).

n—~o0

Otherwise letw = w'a, with a € A. Clearly f(w) = f(w')A, for someA € m*. If A = ¢, we let
p(w) = p(w'). Otherwise, ifA = 61 ... o, for somek > 1, we let

p(w) = max{di,..., 0}
Now it is enough to show that, for eache A“,

limsup p(u [ n) = limsup f(u)(n).

n—oo n—oo

If, for somen, f(u | n) is infinite then it must equaf(u). Then the sequence on the left-hand side
stabilizes on the value that equals precisely to the rigimghside. Otherwise/,(u) can be decomposed

f(u) = A()Al N

wheref(u | n+1) = f(u | n)A,. Then the claim follows from a simple observation that if in a
sequencex € m* we replace any number of (pairwise disjoint) subwords byr tm@xima, thelim sup
remains the same. O

It follows from the above lemma that rainbows are closed undatinuous reductions, i.e., ff: AY —
A% is a continuous mapping ard C A“ a rainbow thery ~!(K) is also a rainbow. Indeed, jf: A* —
m iS an advice recognizing then the mapping

wi p(f(w) 10), p(f(u) [ 1), ...

is a continuous reduction gf (K to Parity,,, hencef ~!(K) is a rainbow by Lemma 2.2. Hence, to
show that rainbows comprise the whole cl& it is enough to exhibit a rainbow complete in this class
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(w.r.t. continuous reductions). It is well known that thare (ordinary)w-regular languages complete
in 9. For concreteness, suppose thatontains letters), 1, and consider the sdtarity, which is
then included inA“. It is straightforward to see thdtarity, cannot be recognized by a deterministic
Biichi automaton and hence, by Landweber’s charactesizdii] (see also [13], Theorem 5.3) belongs
to 39 — I1Y. By the result of Wadge (see [6], Theorem 22.10), this insplfet Parity, is complete in
9. (A direct proof of this fact is also not difficult.)

To conclude the proof of the theorem, it is enough to show thiabows form a Boolean algebra.
It is easy to see that ijf : A* — m is an advice for an automaton recognizikgthen the formula
p(w) = p(w) + 1 gives an advice : A* — m recognizing the complement &f. Next it suffices to
show that rainbows are closed under binary unionk{fand K> are rainbows, it is straightforward to
construct a non-deterministic automaton with advice racgg K; U K». By Proposition 2.1, it can be
determinized, henc&; U K is a rainbow. This remark completes the proof. O

3. Defining words in trees

In this section, we show that a set of infinite words is MSO ddfia in ak-ary tree if and only if it
is recognizable by a parity automaton with advice. Togethigr Theorem 2.1, this yields the desired
topological characterization.

We restrict our considerations to binary trees; extensiaihe results tok-ary trees, fork > 2, is
routine. (Fork = 1 the result is trivial.)

Monadic second-order logic A (relational)signatureis a finite set- of relation symbols; eacR in ~
given with a (finite)arity ar(R) > 1. The formulas ofnonadic second order (MSO) logiwer signature

7 use two kinds of variables individual variablesxg, 21, ..., andset variablesXy, X7, .... Atomic
formulas arev; = x;, R(xi,, ..., %,z ), andX;(z;). The other formulas are built using propositional
connectives/, —, and the quantifiefl ranging over both kinds of variables.

Formulas are interpreted in relational structures oversigeaturer, which we present byA =
(A, {RA : R € 1}), whereA is theuniverseof A, andR* C A*(B) is anar(R)-ary relation onA. A
valuationis a mapping from the set of variables (of both kinds), such thét;) € A, andv(X;) C A.
Thesatisfaction relatiorof a formulayp in a structureA under the valuatiom is defined by induction on
¢ in the usual manner and denotAdv |~ ¢ (see, e.g., [3]).

A variable (of any kind) isfree in ¢ if it has an occurrence not bound by a quantifier. We write
v(&1,- -, &) to indicate that the free variables pfare amondy, . . ., £. Clearly, the satisfaction of a
formula depends only on the valuation of its free variabMe write A = ¢|aq, ..., o] to mean that
A v | o, for a valuation, such thaw(¢;) = oy, fori =1,... k.

A (binary) tree with predicatess a structure with the univerdd, 2}*, over the signature consisting
of binary symbolssucc 1, succ o, and unary symbol# , . . ., P,,,, for somem < w. It can be presented

t = <{1,2}*, Pf,..., Pt succ'{,succ§>.

We further assume that the symbels:c; are interpreted as theiccessorelationssucc ¥ = {(w, wi) :
w € {1,2}*}, whereas the symbolB; are interpreted as arbitrary s€t$ C {1,2}*, which we usually
call predicates
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We refer to finite words over the alphabgt, 2} as tonodesof the tree, with the empty word
coinciding with the root. An infinite word, € {1,2}* can be viewed as a path in the tree. As far as
MSO definability is concerned, it is convenient to identifyvith the set of nodes

t={uln:nécuw}

Definition 3.1. A setL C {1,2}* is MSO definable irt, if there exists an MSO formula(X'), such
that, for any setZ C {1, 2}*,

t = ¢|Z] iff Z =, for someu € L.

Automata on trees A non-deterministic (binary) tree automaton with a paritgeptance condition is
presented byD = (A, Q,qr, Tr, rank), whereA is a finite alphabet of input symbol§) is a finite set
of states with an initial statg;, 7r C QQ x A x Q x Q is a set of transitions, andnk : Q — w is the
ranking function. A transitioriq, a, p1, p2) is usually writteng % p1, po.

An input to an automaton is an infinite (binargt)}-valued tree, which can be presented as mapping
t:{1,2}* — A. We letT4 denote the set of all such trees.rén of D on a treet € T4 is itself a@Q)—

valued tree : {1,2}* — @ such that-(¢) = ¢, and, for eachv € dom (r), r(w) *y) r(wl),r(w2) is
atransition in7r. A path P = pgp; ... € {1,2}* in ris acceptingf lim sup,, .. rank(r(pop1 - .. pn))
is even.

A run is acceptingf so are all its paths. The tree languab€D) recognizedby D consists of those
trees inT4 which admit an accepting run.

The correspondence between MSO formulas and automatatotest key step in Rabin’s proof
of decidability of S2S ([10], see also [13]). For a setC {1,2}*, a characteristic mappingz :
{1,2}* — {0,1} is given byxz(v) = 1if v € Z, andxz(v) = 0, otherwise. For a vector of sets
Zy,..., 2y C {1,2}*, acharacteristic tree ; : {1,2}* — {0, 1}* is given by

tZ(U) = <XZ1(U)""7XZ1€(U)>'

Rabin proved [10] that, for an MSO formula without predicate symbols and with the free variables
amongXi, ..., Xx, one can always construct an automaf@p over the input alphabefo, 1}*, such
that, for allZy,..., Z; C {1,2}",

to |: (p[Zl, ceey Zk] iff tZ S L(D¢), 2
wherets is the full binary tree without predicates (see also [13]).
Now, let us replace some variablesgnsay Xy, ..., X,, (m < k), by the monadic relation symbols
Py, ..., P,, thus obtaining a new formula’ over an extended signature. Then, for a tre@here the
new symbols are interpreted by predicat¥s. . ., Pt , we have
t = Zmat,. o, Zu] it ta = Q[PE . P 2ty 2] (3)

The equivalences (2) and (3) allow us to rephrase DefinitidnirBterms of automata. Namely, a set
L C {1,2}* is MSO definable in a tret (with predicatesP}, ..., Pt) iff there exists a tree automaton
D over the alphabef0, 1}™*1, such that, for any set C {1,2}*,

tpt..pt z € L(D) iff Z=dforsomeuc L. 4)
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This last characterization is useful to prove the followahgracterization. We note that a similar results
for languages of finite words has been shown by Fratani (segeh4 in [5]).

Proposition 3.1. A set . C {1,2}* is MSO definable in a tree with predicates if and only if it is
recognized by a parity automaton with advice.

Proof:

Only if. Supposd. is definable inatree = ({1,2}*, Pt,... Pt succt, succt,), and let an automaton
D = (A,Q,qr, Tr, rank) witness this definability in the sense of (4). The automa$aecognizingL
will have the same set of statesAsthe same initial state and thenk function. The advice function
will depend on the values of the predicaffgs At first, for each node < {1,2}*, we fix the set of states
from which the automato® would accept the subtree of: _ p: ; rooted inv, provided that the path

4 did not enter this subtree. More specifically,#gt {1,2}* — {0,1}* be a tree defined by
t2(w) = (Ptvw),. .., Pt (vw),0),

wherePf(z) equalsl if z € Pf, and0 otherwise. LeD,, with ¢ € Q, be an automaton which coincides
with D, except for that its initial state iz We let

acc (v) = {q:t% € L(D,)}.
The advice functiorn of the automatoi is defined by the following rule:

<Pf(v),...,Prtn(U),1)
—

e U, p ER g, whenever the automatdh has a transitiorp q,q, for someq’ €

acc (v2),

(P (), P (v),1)
—

o v, p 2 q, whenever the automatdR has a transitiorp q",q, for someq” €

acc (vl).

Intuitively, for an inputu, the automator3 follows a hypothetical run oD on the characteristic tree
tpt,. pt q» @long the pathi. Note that the input letters for the automatSrcorrespond to directions in
the tree (not to labels). For a transitipn— ¢, ¢’ of D, the automator8 “chooses” one direction: left
or right, depending on its actual input lettdr:or 2, respectively. The advice makes sure that the run
corresponds indeed to an accepting rubof

We now show thai5 accepts an infinite word if and only if D accepts the treg: _ pt 4. Letr be
an accepting run ab on this tree. Consider the sequence of states

T(s)’ T(“O)a T(Uom), T(U0U1U2), ...

It follows directly from the definitions that this is an actieg run of B on .

Conversely, lets = sps1s92... be an accepting run df on a wordu. By assumptionsy = q;
andu | n,s, =3 s,.1, forn < w. We construct a rum of D on tpt, . pt g as follows. We first let
r(u [ n) = sy, forn < w. That is, the states assumed along the paihe the same as in the ranNote
that, whenever,, = 1, there is a transition

(Pt (uln),...,P%, (uln),1)
Sn — Sn+1,4,
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for someq € ace ((u [ n)2). Hence, we can define an accepting run starting fgoom the subtree of
tpt .. pt o footed in(u [ n)2, which coincides with the tret?urnﬂ. Similarly, if u,, = 2 then we can
extend the run on the subtree rootedin| n)1. Thus we obtain an accepting runBfontpt  pt 4,

12 mo
as desired.

If. By Proposition 2.1 and the subsequent considerations, weassume thal is recognized by
a deterministic automaton with a state-advice {1,2}* — m, for somem. Consider a treg¢ with
predicates”}, . .., Pt , defined by

ve Pl iff pv) =i

Clearly,u € L if and only if the highest, such that?} (u | n) holds for infinitely manyi’s, is even. This
last property is readily expressible by an MSO formula aver O

Remark Note that, in the proof of the implicatioli of the above proposition, the modedepends
on the advicep, but the actual MSO formula depends only .an Hence, we have in fact a sequence
of formulasy,, (expressing the parity condition), such that each MSO delinset of infinite words is
definable by some,,,.

By combining Proposition 3.1 with Theorem 2.1, we obtainftiikowing.

Corollary 3.1. AsetL C {1,2}¥ is MSO definable in a tree with predicates if and only if it i®pr
sentable as a Boolean combination of setE§w.r.t. the Cantor topology ofil, 2}«.

As we have mentioned above, the extension of this resuletalfphabef 1,2, ...k}, foranyk < w, is
completely routine.

We complete our considerations by an observation that dsfityain binary trees with extra predi-
cates in nevertheless more powerful than definability imith extra predicates, in the following sense.
Consider the structure

N = (w,PlN,...,Pnlj, such>,
wheresuce N = {(n,n+1) : n < w}, andPN C w, fori = 1,...,m, are arbitrary monadic predicates

overw. We are now interested in definability of languages of irdimitords in this structure in the usual
sense, i.e., by viewing words as characteristic functidnapes of sets. More specifically, for a vector
of setsZy,. .., Zy C w, its characteristic words an infinite wordu ; : w — {0, 1}*, defined by

uz(n) = (Zi(n),..., Zy(n)),
whereZ;(n) = 1if n € Z;, andZ;(n) = 0 otherwise.

Definition 3.2. A languageL C ({0,1}*)” is MSO definable inN if there exists an MSO formula
o(X1,...,Xg)), such that, for any setg,..., Z; C w,

N}:@[Zl,,Zk] iff UZGL
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Let w denote the structur®N without any predicates. We use the correspondence betwé& M
formulas ovew and Biichi automata analogous to (2), originally establishy Biichi [2] in his proof of
decidability of S1S (see also [13]). We then have the follgpanalogue to the equivalence (4) above.
For a languagd. C ({0,1}*)" definable by a formule (X1, ..., X}) interpreted in a structurdl with
predicatesPl, ..., PN, we can find a non-deterministic Biichi (or deterministicityh automaton3
over the alphabef0, 1}™**, such that, for anyy, ..., Z; C w,

1

----------

sary, tof-ary trees, for sufficiently largé < w.
We note that the converse is not true. Let

Ly = {(0"1)* : n < w}.

Proposition 3.2. The languagéd. is definable in the sense of Definition 3.1 (up to a renamingf) nbt
in the sense of Definition 3.2.

Proof:

For the first part of the claim, we renanig to the languagd (1"2)* : n < w}. Itis easily definable,
e.g., in a tree with one predicafe holding precisely in the nodese (172)*, for n < w. The defining
formula ensures that the predicate holds infinitely oftethenpath.

For the second part, suppose the contrary andslbe a deterministic parity automaton satisfying
(5). Like in the proof of Proposition 2.1, we use notatios « for the product of words € ({0,1}"™)"
anda € {0,1}“. Letu s be the characteristic word of the tupRyY, ..., PN, ThenB acceptsu s x « iff
a = ay =4 (1"2)%, for somen. But then we can easily fool the automaton by swapping thiixese
of equal length of two different accepted words. More spedlify, let X' be greater than the number of
states of3. Then there ar® < i < 7 < K, such that the automaton assumes the same giter
reading the prefix of lengthK of the wordsu s x o;; andu 5 x a;. Decomposey; = (a; [ 2K) ;. Then
the automaton would also accept the warglx (o; [ 2K) 3;, violating (5). O

Acknowledgments. We thank tukasz Kaiser and Filip Murlak for helpful commeatsthe preliminary ver-
sion of this paper.
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