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1. Introduction

The guarded fragment (GF) is a robustly decidable
syntactic fragment of first-order logic possessing many
favourable model theoretic traits, such as the finite model
property [5]. The guarded fragment has received much at-
tention since its conception thirteen years ago [1] and has
since seen a number of variants and extensions adopted
in diverse fields of computer science. One of the most
powerful extensions to date, guarded fixpoint logic (μGF)
was introduced by Grädel and Walukiewicz in [6], who
showed that the satisfiability problem of guarded fix-
point logic is computationally no more complex than for
the guarded fragment: 2ExpTime-complete in general and
ExpTime-complete for formulas of bounded width. Guarded
fixpoint logic extends the modal μ-calculus with backward
modalities, hence it does not have the finite model prop-
erty. Therefore, there is a finite satisfiability decision prob-
lem: to determine whether a formula has a finite model.
Grädel and Walukiewicz left the decidability of this prob-
lem open. Here we claim this inheritance.
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Main Theorem 1. It is decidable whether or not a given guarded
fixpoint sentence is finitely satisfiable. The problem is 2ExpTime-
complete in general, and ExpTime-complete for formulas of
bounded width.

As noted above the stated hardness results already hold
for the guarded fragment [5]. The proof of the upper
bounds combines three ingredients:

(i) the tight connection between μGF and alternating au-
tomata [6];

(ii) decidability of emptiness of alternating automata over
finite graphs [3];

(iii) a recent development in the finite model theory of
guarded logics [2].

In what follows, no intricate knowledge of either [3] or [2]
is required, the results of these papers are used as black
boxes: (i) & (ii) provide the algorithm and the construction
of (iii) proves its correctness. The stated time complexity
results from combining those of (i) (Theorem 3 below) and
(ii) (Theorem 2).

Outline of the paper. Guarded fixpoint logic and related
notions are introduced in Section 2. In Section 3 we define
alternating automata on undirected graphs, and state the
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result of [3]. Section 4 establishes the connection between
guarded fixpoint logic and alternating automata along the
lines of [6]. In Section 5, we present the algorithm and
prove its correctness using [2].

2. Guarded fixpoint logic

The guarded fragment of first-order logic comprises
only formulas with a restricted pattern of “guarded quan-
tification” and otherwise inherits the semantics of first-
order logic. Guarded quantification takes the form

∃ ȳ
(

R(x̄ ȳ) ∧ ϕ(x̄ ȳ)
)

or, dually, ∀ ȳ
(

R(x̄ ȳ) → ϕ(x̄ ȳ)
)

where R(x̄ ȳ) is a positive literal acting as a guard by effec-
tively restricting the variables x̄ to range only over those
tuples occurring in the appropriate positions in the atomic
relation R . Here it is meant that x̄ ȳ include all free vari-
ables of ϕ in no particular order. A guarded set of elements
of a relational structure A is a set whose members occur
among the components of a single relational atom R(ā)

of A. Guarded quantification can be understood as a gen-
eralisation of polyadic modalities of modal logic. Indeed,
the guarded fragment was conceived precisely with this
analogy in mind [1], therefore it is no coincidence that the
model theory of the guarded fragment bears such a strong
resemblance to that of modal logic [7].

Guarded fixpoint logic is obtained by extending the
guarded fragment of first-order logic with least and great-
est fixpoint constructs. Its syntax can be defined by the
following scheme

ϕ ::= R(x̄) | ϕ ∧ ϕ′ | ¬ϕ | ∃ ȳ
(

R(x̄ ȳ) ∧ ϕ′′(x̄ ȳ)
) | Z(z̄) |

[
LFP Z , z̄ . ϕ′′′(Z , z̄)

]
(x̄) | [GFP Z , z̄ . ϕ′′′(Z , z̄)

]
(x̄)

where R is an arbitrary atomic relation symbol, Z is a
second-order fixpoint variable, where all free first-order
variables of ϕ′′(x̄ ȳ) and ϕ′′′(Z , z̄) are among those indi-
cated, and ϕ′′′(Z , z̄) is required to be positive in Z . The se-
mantics is standard: the least (or greatest) fixpoint of a for-
mula ϕ′′′(Z , z̄) on a given structure is the wrt. set inclusion
least (resp. greatest) relation S satisfying S(ā) ↔ ϕ′′′(S, ā)

for all ā on the structure. Crucially, fixpoint variables and
fixpoint formulas are not allowed to stand as guard in a
guarded quantification, only atomic relation symbols may
act as guards. Furthermore, within sentences it can be as-
sumed wlog. that in the matrix ϕ′′′(Z , z̄) of a fixpoint for-
mula the tuple of free variables z̄ is explicitly guarded [6].

Guarded fixpoint logic naturally extends the modal μ-
calculus with backward modalities. As such it can axioma-
tise (the necessarily infinite) well-founded directed acyclic
graphs having no sink nodes, e.g. as follows.

∃xy E(x, y) ∧ ∀xy
(

E(x, y)

→ [
LFP Z , z .∀v E(v, z) → Z(v)

]
(x) ∧ ∃w E(y, w)

)

Guarded bisimulation. Guarded logics possess a very ap-
pealing model theory in which guarded bisimulation plays
a similarly central role as does bisimulation for modal log-
ics. A guarded bisimulation [1,7] between two structures A0
and A1 of the same relational signature is a family Z of
partial isomorphisms α : A0 → A1 with Ai ⊆ Ai , satisfy-
ing the following back-and-forth conditions. (i) For every
α : A0 → A1 in Z and every guarded subset B0 of A0
there is a partial isomorphism γ : C0 → C1 in Z with
B0 ⊆ C0 and α(x) = γ (x) for all x ∈ A0 ∩ C0. (ii) For ev-
ery α : A0 → A1 in Z and every guarded subset B1 of
A1 there is a partial isomorphism γ : C0 → C1 in Z with
B1 ⊆ C1 and α−1(y) = γ −1(y) for all y ∈ A1 ∩C1. We write
A0, ā ∼g A1, b̄ to signify that there is a guarded bisimula-
tion Z between A0 and A1 with (ā 
→ b̄) ∈ Z and say that
ā of A0 and b̄ of A1 are guarded bisimilar.

Guarded bisimilarity is an equivalence relation on the
set of guarded tuples of any relational structure, and
guarded fixpoint formulas are invariant under guarded
bisimulation [7]: if A, ā ∼g B, b̄ then for every guarded
fixpoint formula ϕ it holds that A |� ϕ(ā) iff B |�
ϕ(b̄). The guarded fragment has been characterised as
the guarded-bisimulation-invariant fragment of first-order
logic, most recently even in the context of finite struc-
tures [8]. Similarly, guarded fixpoint logic is characterised
as the guarded-bisimulation-invariant fragment of guarded
second-order logic [7].

3. Alternating two-way automata

In this section, we introduce alternating automata on
undirected graphs. A similar model, namely alternating
two-way automata on infinite trees, was used by Grädel
and Walukiewicz [6] in their decision procedure for sat-
isfiability of guarded fixpoint logic. They reduced satisfi-
ability to the emptiness problem for alternating two-way
automata on infinite trees. The latter problem was shown
to be decidable by Vardi [9].

In [9,3,4] a two-way automaton navigating an infinite
tree has the choice of moving its head either to the parent
or to a child node, or staying in its current location. In this
paper, instead of automata on directed trees, we consider
automata on undirected graphs. In an undirected graph,
the automaton can only choose to stay in place or to move
to a neighbouring vertex. This is in the spirit of [6], where
automata on directed trees were employed, which did not
actually distinguish between parent and child nodes.

An alternating automaton on undirected graphs is defined
by: an input alphabet Σ , a finite set of states Q = Q ∀ � Q ∃ ,
an initial state qI , a ranking function Ω : Q → N for the
parity acceptance condition, and a transition relation

δ ⊆ Q × Σ × {stay,move} × Q .

An input to the automaton is an undirected graph whose
nodes are labelled by Σ , and a designated node v0 of the
graph. The automaton accepts an input graph G from an
initial node v0 if player ∃ wins the parity game defined
below.

The arena of the parity game consists of pairs of the
form (v,q), where v is a node of G , and q is a state of the
automaton. The initial position in the arena is (v0,qI ). The
rank of a position (v,q), as used by the parity condition, is
Ω(q). Let u be a node of the input graph, and let a ∈ Σ be
its label. In the arena of the game, there is an edge from
(u,q) to (w, p) if:
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• there is a transition (q,a, stay, p) and u = w; or
• there is a transition (q,a,move, p) and {u, w} ∈ E(G).

Some alternating automata on undirected graphs accept
only infinite graphs. (Given a 3-colouring of a graph by
{0,1,2}, edges can be directed so that ‘target colour’ –
‘source colour’ ≡ 1 mod 3. An automaton can verify 3-col-
ouring and well-foundedness of the induced digraph and
check for an infinite forward path.) Therefore, it makes
sense to ask: does a given automaton accept some finite
graph? This problem was shown decidable in [3,4].

Theorem 2. (See [3,4].) Given an alternating automaton on
undirected graphs it is decidable in exponential time in the num-
ber of states of the automaton, whether or not it accepts some
finite graph.

Formally, [3,4] considered two-way automata on di-
rected graphs with the automaton having transitions cor-
responding to: staying in the same node, moving for-
ward along an edge, and moving backward along an edge.
Clearly, the two-way model is more general than the one
for undirected graphs.

Undirected bisimulation. We write nodes(G) for the nodes
of a graph G . Consider two undirected graphs G0 and G1,
with node labels. An undirected bisimulation is a set

Z ⊆ nodes(G0) × nodes(G1)

with the following properties. If (v0, v1) belongs to Z , then
the node labels of v0 and v1 are the same. Also, for any
i ∈ {0,1} and node wi connected to vi by an edge, there
exits a node w1−i connected to v1−i by an edge and such
that (w0, w1) ∈ Z . We say that node v0 of a graph G0 is
bisimilar to node v1 in a graph G1 if there is an undirected
bisimulation that contains the pair (v0, v1). In this case,
for every alternating automaton on undirected graphs, the
automaton accepts G0 from v0 if and only if it accepts G1
from v1.

Undirected unravelling. Consider an undirected graph G
and v a node of G . The undirected unravelling of G from
v is the graph T , whose nodes are paths in G that begin
in v , and edges are placed between a path and the same
path without the last node. The undirected unravelling is a
tree. We write

π : nodes(T ) → nodes(G)

for the function that maps a path to its terminal node. If
G has node labels, then one labels the nodes of T accord-
ing to their images under π . Then, the graph of π is an
undirected bisimulation between T and G .

4. Tabloids

Below we work with undirected graphs representing
templates of relational structures. We call them tabloids
alluding to their semblance to the tableaux of [6]. Tabloids
are also reminiscent of the ‘guarded bisimulation invari-
ants’ of [2]. Intuitively, vertices of a tabloid represent tem-
plates for guarded substructures and edges signify their
overlap. The precise manner of overlap is implicitly coded
by repeated use of constant names appearing in vertex
labels. By contrast, [2,7] code overlaps explicitly as edge
labels.

Tabloid. Fix a relational signature Σ and a set K of con-
stant names. A tabloid over signature Σ and constants K
is an undirected graph, where every node v is equipped
with two labels: a set K v ⊆ K , called the constants of v ,
and an atomic Σ-type τv over K v , called the type of v . If
nodes v and w are connected by an edge in the graph,
then the types τv and τw should agree over the constants
from K v ∩ K w .

A structure from a tree tabloid. Consider a tabloid T whose
underlying graph is a tree. We define a Σ-structure A(T )

as follows. The universe of A(T ) is built using pairs (v, c),
where v is a vertex of T and c is a constant of v . The uni-
verse consists not of these pairs, but of their equivalence
classes under the following equivalence relation: (v, c) and
(v ′, c′) are equivalent if c = c′ and c occurs in the label
of every node on the undirected path connecting v and v ′
in T . The path is unique, because the underlying graph is a
tree. We write [v, c] for an equivalence class of such a pair.
A tuple ([v1, c1], . . . , [vn, cn]) satisfies a relation R ∈ Σ in
A(T ) if there is some node v such that

[v, c1] = [v1, c1], . . . , [v, cn] = [vn, cn] (1)

and R(c1, . . . , cn) is implied by τv . Because T is a tree, this
definition does not depend on the choice of v , since the
set of nodes v satisfying (1) is connected. It is, however,
unclear how to extend this construction to cyclic tabloids.

Labelling with a formula. Consider a tree tabloid T over
constants K and signature Σ . Let ϕ be a formula over Σ .
Consider a node v of T with constants K v , a subformula
ψ of ϕ , and a function η that maps free variables of ψ

to constants in K v . For v and η, define a valuation [η]v ,
which maps free variables of ψ to elements of the struc-
ture A(T ), by setting [η]v(x) = [v, η(x)].

The ϕ-type of the node v is the set of pairs (ψ,η) such
that ψ is a subformula of ϕ or a literal in the signature of
ϕ , and such that ψ is valid in A(T ) under the valuation
[η]v . Thus each ϕ-type determines a unique atomic type.
The set of ϕ-types is finite and depends on K and ϕ alone,
call this set Γϕ,K . Given a tree tabloid T and ϕ , we define
Tϕ to be the tree with the same nodes and edges as T , but
where every node is labelled by its ϕ-type.

Recall that the width of a formula is the maximal num-
ber of free variables in any of its subformulas. The follow-
ing was established in [6].

Theorem 3. (See [6].) Let ϕ be a guarded fixpoint sentence of
width n and let K be a set of 2n constants. One can compute an
alternating automaton Aϕ on Γϕ,K -labelled undirected graphs,
such that Aϕ accepts a tree Υ if and only if
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Υ is of the form Tϕ for a tree tabloid T such that A(T ) |� ϕ

The number of states of Aϕ , and the time to compute it, are
O (|ϕ| · exp(n)).

5. Algorithm for finite satisfiability

We now propose the algorithm for finite satisfiability
of guarded fixpoint logic. Given a formula ϕ , we com-
pute the automaton Aϕ using Theorem 3. Then, we test if
the automaton Aϕ accepts some finite graph, using Theo-
rem 2. The combined running time clearly meets the claim
of Theorem 1. This section is devoted to proving the cor-
rectness of this procedure.

Proposition 4. A formula ϕ of guarded fixpoint logic has a finite
model if, and only if, the associated automaton Aϕ accepts a
finite graph.

5.1. From a finite accepted graph to a finite model

First we prove that if the automaton Aϕ accepts a fi-
nite graph Gϕ , then ϕ is satisfied in some finite structure.
By Theorem 3, the undirected unravelling of Gϕ , equally
accepted by Aϕ , takes the form Tϕ for a tree tabloid T
such that A(T ) |� ϕ . In fact, T is the undirected unravel-
ling of the finite tabloid G obtained from Gϕ by restricting
its labels to atomic types.

Lemma 5. Let G be a finite tabloid and T its undirected un-
ravelling. Then ∼g has finite index on the set of guarded tuples
of A(T ).

Proof. All guarded subsets of A(T ) are of the form {[v, c1],
. . . , [v, cr]} where c1, . . . , cr ∈ K are constant names ap-
pearing in the label of v ∈ nodes(T ). Let π : nodes(T ) →
nodes(G) be the natural projection from T onto G . Then
(T , v) ∼= (T , w) whenever π(v) = π(w), so it suffices to
show the following.

Claim 6. A(T ), ([v, c1], . . . , [v, cr]) ∼g A(T ), ([w, c1], . . . ,
[w, cr]) for every v and w such that (T , v) ∼= (T , w) and
{c1, . . . , cr} = K v = K w .

Let for each v and w as in the claim αv,w be the par-
tial function mapping [v, c] 
→ [w, c] for all c ∈ K v . By
definition of A(T ) we have that each αv,w is a partial iso-
morphism among guarded subsets of A(T ). We claim that

Z = {
αv,w

∣∣ (T , v) ∼= (T , w)
}

is a guarded bisimulation. Take any αv,w ∈ Z and guarded
subset B of A(T ). Then B = {[u,d1], . . . , [u,ds]} for some
u ∈ nodes(T ) and constant names D = {d1, . . . ,ds} ⊆ Ku .
Because (T , v) ∼= (T , w) there is a y ∈ nodes(T ) such that
(T , v, u) ∼= (T , w, y). In particular, B ⊆ dom(αu,y), and the
paths connecting v with u and w with y are isomorphic.
We thus have for every i � r and j � s that [v, ci] = [u,d j]
iff ci = d j and ci ∈ Kz for every node z on the path con-
necting v and u (equivalently, on the path connecting w
and y) iff [w, ci] = [y,d j]. Therefore, αu,y and αv,w agree
on dom(αu,y) ∩ dom(αv,w), and α−1

u,y and α−1
v,w agree on

rng(αu,y)∩ rng(αv,w). This shows that Z satisfies the ‘forth
property’ and, by symmetry, also the ‘back property’, as
needed. �

Note that, in stark contrast to bisimulation on graphs,
there is no apparent way of defining a quotient A(T )/∼g.
Nevertheless, we can obtain a finite structure guarded
bisimilar to A(T ) using the following result.

Theorem 7. (See [2, Theorem 6], cf. also [8].) Every relational
structure on which ∼g has finite index is guarded bisimilar to
a finite structure.

5.2. From a finite model to a finite accepted graph

Next we prove that if ϕ has a finite model then Aϕ of
Theorem 3 accepts some finite graph. Recall that all graphs
accepted by Aϕ are labelled by ϕ-types from Γϕ,K , where
K is a set of 2n constants, with n the width of ϕ . So let A

be a finite model of ϕ . Wlog. all guarded subsets of A are
of size at most n (as ϕ is oblivious to relational atoms with
more than n distinct components, these can be removed
from A).

We define a finite tabloid G as follows. Vertices of G are
injections χ : A → K , where A is a guarded subset of A.
For each vertex χ its set of constants is Kχ = rng(χ), and
its type τχ is the image of the atomic type of A in A un-
der χ . Two vertices χ and χ ′ are adjacent in G just if
χ ∪ χ ′ is an injective function. This ensures that adjacent
nodes are labelled with consistent types, i.e. that G is in-
deed a tabloid.

Let T be the undirected unravelling of G , and π :
nodes(T ) → nodes(G) the natural projection. Then (T , v) ∼=
(T , w) whenever π(v) = π(w). From Claim 6 and the
guarded bisimulation invariance of μGF it follows that v
and w have the same label in Tϕ whenever π(v) = π(w).
Hence, it make sense to define Gϕ as having the same
underlying graph as G with each χ ∈ nodes(G) labelled
exactly as any and all nodes in π−1(χ). Then Tϕ is isomor-
phic to the undirected unravelling of Gϕ . By Theorem 3,
Aϕ accepts Gϕ iff it accepts Tϕ iff A(T ) |� ϕ . Thus, to
conclude, it suffices to prove the following.

Claim 8. A ∼g A(T ).

Proof. For each v ∈ nodes(T ), π(v) is an injection χv :
Av → K v from a guarded subset Av of A to the set K v

of constant names in the label of v . Let γv : K v → A(T )

map each c ∈ K v to [v, c]. Then γv ◦χv is a partial isomor-
phism between guarded subsets of A and A(T ). We claim
that {γv ◦ χv | v ∈ nodes(T )} is a guarded bisimulation be-
tween A and A(T ).

‘Forth’: Consider γv ◦ χv : Av → {[v, c] | c ∈ K v} and B a
guarded subset of A. Then, since |B ∪ A| � |K | = 2n, there
is a vertex χ : B → K such that χv |Av ∩B = χ |Av ∩B and
χ(Av) ∩ χ ′(B) = χ(Av ∩ B). It follows that χ is adja-
cent to χv in G , hence w = v · χ is adjacent to v in T ,
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π(w) = χw = χ , and that thus γw ◦χw fulfills the require-
ments of the ‘forth property’.

‘Back’: Consider now γv ◦ χv : Av → {[v, c] | c ∈ K v} and
a guarded subset B = {[w,d] | d ∈ D} of A(T ). Let C =
D ∩ K v . The intersection of B and {[v, c] | c ∈ K v } consists
of those [v, c] such that c ∈ C appears in the label of every
node along the path ρ connecting v to w in T . Let u and
y be adjacent nodes of ρ . Then π(u) = χu and π(y) = χy

are adjacent in G and thus χ−1
u |C = χ−1

y |C . By induction

we get that χ−1
v |C = χ−1

w |C . It follows that γw ◦ χw satis-
fies the requirements of the ‘back property’. �

This completes the proof of Proposition 4, thereby also
our Main Theorem 1.
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