Tree-Walking Automata Do Not Recognize All Regular
Languages

- - - *
Mikolaj Bojanczyk
Warsaw University and LIAFA, Paris 7

bojan@mimuw.edu.pl

ABSTRACT

Tree-walking automata are a natural sequential model for
recognizing tree languages. Every tree language recognized
by a tree-walking automaton is regular. In this paper, we
present a tree language which is regular but not recognized
by any (nondeterministic) tree-walking automaton. This
settles a conjecture of Engelfriet, Hoogeboom and Van Best.
Moreover, the separating tree language is definable already
in first-order logic over a signature containing the left-son,
right-son and ancestor relations.

Categoriesand Subject Descriptors

F.4.3 [Formal Languages]: Classes defined by grammars
or automata; F.1.1 [Models of Computation]: Automata

General Terms
Theory

1. INTRODUCTION

A tree-walking automaton is a natural type of finite au-
tomaton working over trees. At every moment of its run, a
tree-walking automaton is in a single node of the tree and
in one of a finite number of states. It walks around the tree,
choosing a neighboring node based on the current state, the
label in the current node, and whether this node is a left son,
a right son, a leaf, or the root. The tree is accepted if one of
the accepting states is reached. Even though tree-walking
automata were introduced in the early seventies by Aho and
Ullman [1], not much is known about this model.

This situation is different from the “usual” tree automata —
branching tree automata — which are a well understood ob-
ject. Both top-down and bottom-up nondeterministic branch-
ing tree automata recognize the same class of languages.

*Supported by EC project GAMES and Polish KBN grant
No. 4 T11C 042 25.

JrPartially supported by EC project GAMES.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC' 05, May 22-24, 2005, Baltimore, Maryland, USA.

Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

T
Thomas Colcombet
Warsaw University and IRISA-CNRS

colcombe@irisa.fr

Languages of this class are called regular, the name being so
chosen because this class enjoys many nice properties of the
class of regular word languages.

It is not difficult to prove that every language recognized
by a tree-walking automaton is regular. However, until re-
cently most fundamental questions pertaining to tree-walking
automata remained unanswered:

1. Is every regular language recognized by a tree-walking
automaton?

2. Can tree-walking automata be determinized?

3. Are tree-walking automata closed under complemen-
tation?

There has been much related research, which can be roughly
grouped in two categories: nondefinability results for weak-
ened models of tree-walking automata [6, 7, 2] and definabil-
ity results for strengthened models of tree-walking automata
[5, 4]. In [3] it was shown that the answer to question 2 is
negative. In this paper we show that the answer to question
1 is also negative: we present a regular language that is not
recognized by any tree-walking automaton. The techniques
used here extend the ones of [3].

2. BASIC DEFINITIONS

The trees in this paper are finite, binary trees labeled by
a given finite alphabet . A X-tree t is a mapping from
N: C {0,1}" to X, where N; is a finite, non-empty, prefix-
closed set such that for any v € N¢, v0 € N, iff vl € Ny.
Elements of N; are called nodes of the tree. A set of trees
over a given alphabet is called a tree language.

With every tree language L we can associate the standard
Myhill-Nerode congruence ~j,, which identifies two trees if
they cannot be distinguished by any context. More precisely,
s ~r s’ holds if for every tree ¢ and every node v of ¢, either
both or none of the trees t[v := s], tfv := s’] belong to L.
Here t[v := s] is the usual operation of substituting a tree
for a node. A tree language L is regular if the relation ~p, is
of finite index. We denote by REG the class of regular tree
languages.

We now proceed to define tree-walking automata. Ev-
ery node v in a tree ¢t has a type. The possible values are
Types = {r,0,1} x {l,i}, where r stands for the root, 0 for
a left son, 1 for a right son, [for a leaf and i for an internal
node (not a leaf). A direction is an element of {1,¢,0,1},
where informally T stands for ‘parent’, € stands for ‘stay’, 0
for ‘left son’ and 1 for ‘right son’.

DEFINITION 1. A tree-walking automaton is a tuple A =
(Q,%,1,F,0), where Q 1is a finite set of states, [, FF C Q
are respectively the sets of initial and accepting states, and
6 is the transition relation of the form

0 CQ x Types x X x Q x{1,¢,0,1}.

A configuration is a pair of a node and a state. A run
is a sequence of configurations, where every two consecutive
configurations are consistent with the transition relation. A
run is accepting if it starts and ends in the root of the tree,
the first state is in I and the last state is in F. The au-
tomaton A accepts a tree if it has an accepting run over it.
A set of X-trees L is recognized by A if A accepts exactly
the trees in L. We use TWA to denote the class of tree
languages recognized by some tree-walking automaton.

We would like to point out here that reading the type of
a node is an essential feature of a tree-walking automaton.
Indeed, Kamimura and Slutzki show in [6] that tree-walking
automata which do not have access to this information can-
not recognize all regular languages, being incapable of even
searching a tree in a systematic manner.

One can easily verify that every language recognized by a
tree-walking automaton is regular, i.e. TWA C REG. It has
been long open whether this inclusion is strict. Engelfriet
conjectured that this is indeed the case [4]. A proof of this
conjecture is the subject of the present paper.

3. THE SEPARATING LANGUAGE

In this section we present a regular language L not ac-
cepted by any tree-walking automaton. This language wit-
nesses the strictness of the inequality

TWA C REG.

We restrict ourselves to {a, b}-trees. Moreover we require
that only leaves can be labeled by a. We sometimes refer to
the symbol b as the blank symbol. Trees containing only the
blank symbol are called blank trees. In a blank tree, only
the structure is important.

For a non-blank tree ¢t with a occurring only in the leaves,
we define its “branching structure”. Intuitively this is a blank
tree whose leaves correspond to a-leaves in the tree ¢t and
whose structure mirrors the one in ¢. Each inner node in
the branching structure can be identified with a greatest
common ancestor of two a-leaves in the tree t. Formally,
a blank tree s is the branching structure bs(t) of a tree ¢
if there is an injective mapping h assigning nodes of s to
nodes of ¢ such that the lexicographic and prefix orders are
preserved and the image under h of the leaves of s is the set
of a-labeled leaves in ¢t. The branching structure is uniquely
defined. The following drawing illustrates this definition on
an example.

355 53

Let K be the set of blank trees where all branches are of
even length. The language L mentioned at the beginning of
this section is bs ' (K), i.e. the set of trees whose branching

structure belongs to K. We now state the main result of
this paper:

THEOREM 2. The language L is reqular but is not recog-
nized by any tree-walking automaton.

The easy part is showing that L is regular. The Myhill-
Nerode congruence for this language has four classes: trees
that cannot be a subtree of a tree in L, trees whose branching
structure has only branches of even length and trees whose
branching structure has only branches of odd length.

One can in fact show a stronger result:

Fact 1. The language L is definable in FO, i.e. first-
order logic with the ancestor relation and the left and right
successor relations.

Proof It is easy to show that the function bs can be imple-
mented by an FO-interpretation. Since FO-interpretation
preserves FO-definability by inverse image, it remains to
show that the language K is FO-definable.

The main idea is that using FO we can check the parity
of the depth of a leaf in (01)*(e4+0). We will refer to such a
leaf as the middle leaf of the tree, and to the corresponding
branch as the middle branch. An FO-formula can detect the
middle leaf by checking that each of its ancestors is either
the right son of a left son, the left son of a right son, the left
son of the root, or the root itself. The middle parity of a tree
is defined to be the parity of the depth of the middle leaf;
it is FO-definable since the middle node is at even depth if
and only if it is a left son. The middle parity of a node is
defined to be the middle parity of the subtree rooted at this
node.

Let M be the set of trees whose middle parity is even,
and where the two sons of any internal node have the same
middle parity. We claim that K = M. According to the
previous remarks, this implies that K is FO-definable.

The inclusion K C M is obvious. For the other direction,
let t be a tree outside K. If all leaves in ¢ have the same
depth parity, then the middle node is a right son and t & M.
Otherwise, let v be a node in ¢ of maximal depth whose
subtree has leaves of both even and odd depth. But then
the middle parities of v’s sons must be different and ¢ ¢ M.
|

The hard part in the proof of Theorem 2 remains: we
need to prove that the language L is not recognized by any
tree-walking automaton. The rest of this paper is devoted
to proving this result.

3.1 Overview of the proof

The proof is divided into three parts.

In the first part (Section 4), we define patterns. A pattern
is a particular type of tree with distinguished nodes, called
ports. Patterns are constructed in such a way that the au-
tomaton gets lost when traveling from one port to another.
For every possible branching structure ¢, we construct out
of patterns a tree Af whose branching structure is t. We
then show that in such a tree, a tree-walking automaton is
basically limited to doing variations on a depth-first search.

In the second part (Section 5) we reduce the problem to
the acceptance of K by a simpler kind of automata, called
frontier automata. A frontier automaton can be seen as a
version of the tree-walking automaton that works directly
on the branching structure. This reduction is based on in-
specting the way a tree-walking automaton can behave over
a tree built out of patterns.

Finally, in the third part (Sections 6 and 7) we show that
frontier automata cannot recognize the language K. The

proof principle is to take a big tree in K and perform a
transformation on it — a ‘rotation’ — which cannot be de-
tected by the frontier automata, but yields a tree outside K.
This concludes the proof of Theorem 2.

4. PATTERNS

In this section we define patterns, develop a pumping ar-
gument for them, and then study its consequences for the
automaton.

Patterns are fragments of trees with some holes (called
ports) in them. Patterns can be assembled by gluing their
ports together. Any automaton naturally induces an equiva-
lence relation on such objects: two patterns are equivalent if
in any context, the automaton cannot detect the difference
when one pattern is replaced by another. This equivalence
relation is the key notion in the study of patterns.

In Section 4.1 we define patterns. We then state Lemma, 4,
where we introduce three basic patterns, which satisfy use-
ful equivalences. These will be used as building blocks in
subsequent constructions.

In Section 4.2, we combine the basic patterns into pattern
expansions, i.e. bigger patterns that are locally confusing
for the automaton.

In Section 4.3 we study possible behaviors of the automa-
ton over the basic patterns (Proposition 1 and Lemma 10).
This study shows what are the possible runs that the au-
tomaton can perform inside a pattern expansion.

4.1 Patternsand pattern equivalence

We fix for this section a tree-walking automaton

A=(Q,q1, F,96) .

Figure 1: A pattern of arity n

A pattern A is a {b,*}-tree where the symbol * labels
only leaves which are left sons (the left son assumption is for
technical reasons). See Fig. 1 for an illustration. The i-th *-
labeled leaf (numbered from left to right, starting from 0) is
called the i-th-port. Port e stands for the root. The number
of * labels is called the arity of the pattern. Given an n-ary
pattern A and n patterns Aog,...,A,—_1, the composition
A[Ao,...,An_1] is obtained from A by simultaneously sub-
stituting each pattern A; for the i-th port. Given a set P of
patterns, we denote by C(P) the least set of patterns which
contains P and is closed under composition.

DEFINITION 3. The automaton’s transition relation over
an n-ary pattern A,

oA CQx{0,...,n—1} xQ x{,0,...,m— 1},

contains a tuple (p,i,q,7) if it is possible for A to go from
state p in port i to state q in port j in A. Ports are treated as
non-leaf left sons. In particular the port € is not seen as the
root and leaf ports are not seen as leaves by the automaton.

(a,€)

Cpit)

Figure 2: A pattern A with (p,i,q,¢) in da

From the point of view of the automaton, the relation
da sums up all important properties of a pattern and we
consider two patterns equivalent if they induce the same re-
lation. The essence of this equivalence is that if one replaces
a sub-pattern by an equivalent one, the automaton is unable
to see the difference. To simplify the definition, we only con-
sider contexts where the root of the pattern corresponds to
a left son, and the nodes plugged into the leaf ports are not

AR AN VAN,

Figure 3: The patterns Ay, A; and A

The following lemma was shown in [3]:

LEMMA 4. There exist patterns Ao, A1, A2 — of arities 0,
1 and 2 respectively — such that any pattern in C(Ao, A1, Ag)
of arity i = 0,1, 2 is equivalent to A,.

The patterns Ao, A1 and Ag are the key to our proof. In
a sense, their construction encapsulates all of the pumping
arguments that we will do with respect to the automaton .A.
For instance, the pattern A; is equivalent to a composition
of any number of copies of A; patterns. In particular, if the
automaton can go from the leaf port of Ay to the root port,
then there must be a state that is used twice along the way.

The automaton may do some redundant moves, such as
going one step down, and then one step up, without any
apparent purpose. It will be convenient to eliminate this
obfuscating phenomenon. For this we introduce the inner
loop relation:

DEFINITION 5. The inner loop —. relation over states is
the least transitive and reflexive relation such that p —¢ q
holds whenever (p,e,q,€) or (p,0,q,0) belongs to da,. For
a pattern A, the relation ya is defined to be the set of tu-
ples (p,i,q,j) such that p —. p’ and ¢ —. q for some p',q'
satzsfymg (pl77:7ql7j) € 5A'

The following lemma shows that we can treat the ¢ and ~
relations interchangeably:

LEMMA 6. Two patterns A, A" € C({Ao, A1, As}) are equiv-

alent if and only if yaA = vas.

Proof [Idea] A consequence of Lemma 4 is that all patterns
in C({Ao, A1, Az}) are equivalent to ones where A; has been

plugged in all the ports. This implies that the ya relation
is obtained in a uniform way from the da relation. [J

4.2 Pattern expansions

The pattern preexpansion of blank tree t is the pattern
obtained by replacing every inner node of ¢ with the pattern
A, and replacing every leaf node with a port *. The pattern
preexpansion has as many leaf ports as ¢ has leaves. The
pattern expansion A of t is obtained plugging a A; pattern
into every port (leaf and root) of the pattern preexpansion
(see Fig. 4). With every node v of ¢ we associate a node A,
in the pattern A,, this node does not depend on t. A special
node in a pattern expansion is any node of the form A,,.

Figure 4: A pattern expansion

Given a blank tree ¢, the tree A? is obtained by plugging
an a-labeled node into each port of A;. One can easily verify
that the branching structure of A} is t. If the tree walking
automaton were to accept the language L, it would have to
accept every tree Af for t € K and reject every tree A for
t ¢ K. We will show later that this is impossible, due to the
way tree-walking automata get lost in pattern expansions.

The following lemma shows that the ya, relation describes
the way our fixed tree walking automaton can move across
pattern expansions:

LEMMA 7. Let t be a blank tree along with two nodes v -
a,v-b, withv € {0,1}* and a # b € {¢,0,1}. The following
are equivalent for any two states p and q:

e The automaton can go in A+ from state p in the node
Ay.q to state q in the node A,.p without visiting any
ports or other special nodes, and not visiting A,., be-
fore Ay.q;

e (p,a,q,b) belongs to ya,.

LEMMA 8. Let v be a node in a blank tree t. If the au-
tomaton can loop in A from state p in node A, to state q
in node A, without visiting any ports, then p —- q holds.

The above two lemmas show that runs of the automa-
ton between special nodes in pattern expansions can be as-
sumed to have a very particular form. Take for instance
a blank tree ¢ and two nodes v < w. If there is a run
that goes from A, to A, then, by Lemmas 7 and 8, there
is a run that does this by doing a series of steps of the
form (p,¢,q,0),(p,e,q,1) € ya,. A similar characterization
holds when v and w are incomparable: the automaton first
goes directly from A, in the up direction, then does one of

the steps (p,0,q,1),(p,1,q,0) € ya, and then goes directly
down to A,. This type of reasoning will be used in the
reduction of Theorem 2 to a study of frontier automata.

4.3 A characterization of movesover A;

In this section, we analyze the relations ya,, 7a, and ya,.
We present a classification of the possible ways the automa-
ton can go in A; from the leaf port to the root port. This
classification will be used to formulate two key properties of
frontier automata: Provisos 1 and 2.

From now, instead of the ya,, 7a, and ya, relations, we
will be using the more graphical notation depicted in Fig. 5.

pN\q if (p,1,q,¢) €y,
pOgq if (p,0,¢,0)€va, p,q if (p,0,q,€) € ya,
pN\gq if (peq1)€a,
pTq if (p,0,q,¢) €va, p. g if (pe,q,0) €7a,
plqg if (pe,q,0)€va, prg if (p1,q,0)€va,
prq if (p,0,q,1) € ya,

plq ifp\ gandnotp ~q
plgq ifp " qandnot p™\ ¢
rl g ifp, qandnotp\ ¢
plqg ifp\.gandnotp, q

Figure 5: Graphical notation for va,,va,,vA,

The following proposition is key to our understanding of
the way tree-walking automata move across expansions:

ProOPOSITION 1. If p T q holds then either:

1. For some stater, pTr /' r\ r T q holds; or
2. For some stater, p\r \r \ q holds; or
3. For some state r, p] r] r] q holds; or

4. For some states r1,r2,r, one of the below holds:

(a) pTriiriTq and plral ralgq; or
(b) pTridr /S raAra1gq; or
(c) ptrilrm\relm1q.

We do not go into the proof of this proposition, which is
long and complicated. A symmetric proposition holds for |.

The point of characterizing 1 and | is that these are the
most basic types of move the automaton can make in a pat-
tern expansion. Indeed, by Lemma 7, in order to move from
one special node to another, the automaton needs to tra-
verse the Ay pattern. Since the pattern As can be seen as
having Ay plugged in each of its ports, each such traversal
must employ one of the moves 7 or |. But then we can use
Proposition 1 in order to uncover other possible moves of
the automaton.

Proposition 1 becomes really useful when used in con-
junction with Lemma 10, which relates it with depth-first
searches. We now proceed to define the concept of a depth-
first search (DFS) over patterns.

DEFINITION 9. A pair (q,q) is a left-to-right DFS if

./ 4, q0q, a\Nq, and qrgq.
A pair of states (q,q) is a right-to-left DFS if
aN\q q0q, a/q, and qggq.

Assume for instance that (g, g) is a left-to-right depth-first
search. In this case, the automaton can go in any expansion
A; from state g in a node A, to state ¢ in any node A, as
long as w is lexicographically after v and there is no port of
A lexicographically between the nodes.

LEMMA 10. If g\ q holds, then (g, q) is a left-to-right DES
for some state q. If] G holds, then (q,q) is a right-to-left
DFS for some state q.

A symmetric lemma holds for /| and), except that the
roles of the states ¢ and ¢ are reversed. When put together,
Proposition 1 and Lemma 10 give us some idea of how a
tree-walking automaton can move upwards within a pattern
expansion: it may either get completely lost (by allowing
a move from any node to any of its ancestors, case 1 in
Proposition 1), allow a depth-first search in some fixed di-
rection and nothing else (cases 2 and 3), or, finally, do some
depth-first searches coupled with moves in opposing direc-
tions (case 4).

5. FRONTIER AUTOMATA

In this section we introduce a new kind of automaton,
called a frontier automaton. We then state Proposition 2,
which reduces Theorem 2 to proving that the language K
(the set of blank trees with all leaves at even depth) is not
accepted by any positive boolean combination of frontier
automata.

Informally speaking, a frontier automaton is a tree-tree
walking automaton that jumps from one leaf to another: se-
quences of steps of the automaton which do not encounter
the root or an a-labeled leaf are now considered as “atomic”.
We now proceed with a formal definition of a frontier au-
tomaton.

A step is an element of {£,0,1} x {£,0,1}. Given a step
(a,b) and nodes v,w, we write v —(,) w if v = ua and
w = ub for some u. For instance we have 010 — 1y 011.

A relative path (or simply a path) is a sequence of steps. A
path m = so...s, goes from a node v to a node w, written
v —, w, if for some (actually unique) sequence of nodes
V=10...Up =W, Vj —, Vit1 holds for all i < n.

For k € NU {00}, a k-miz of a in b is defined to be the
set of words over {a,b} that have at most k a’s. A miz of
{a, b} is a k-mix of a in b or a k-mix of b in a, for some k.
A move is a finite union sets of the form {e}, U(0,1)D or
U(1,0)D, where U and D are some mixes of {(0,¢), (1,¢)}
and {(e,0), (¢, 1)} respectively. A move of the form U(0,1)D
is called a right move, a move of the form U(1,0)D is called
a left move. Given a move M and two nodes v, w, we write
vMw if there is a path 7 in M such that v —, w holds.

We assume that all moves satisfy a certain additional prop-
erty that will be defined in Provisos 1 and 2 in Section 7.

DEFINITION 11. A frontier automaton is a tuple A =
(Q,4q1,1,qr, F,0), where Q is a finite set of states, qr,qr €
Q are called respectively the initial and final states, I, F' are
mizes over {0,1} called the respectively the initial and final

positions and the transition function § assigns to each pair
of states a move.

A frontier automaton runs over leafs in a blank tree. A
configuration of the automaton is a pair (p,u) where p is
a state of the automaton and u is a leaf of the tree. We
write (p,u) —* (g,v) if the automaton can go from con-
figuration (p,u) to configuration (g,v) using one move, i.e
if uMwv holds for M = 6(p, q). A run in a tree is a sequence of
configurations where the automaton can go from every con-
figuration to the next one in one move. We write (p, u) =7
(¢,v) if a run exists that begins in (p,u) and ends in (g, v).
When the automaton A is clear from the context, we skip
the superscript A from the notation —* and =7'. A tree
is accepted by the automaton if there is a run that starts
in a leaf belonging to I with state ¢; and ends in some leaf
belonging to F' with state gr.

The following proposition reduces the membership of L in
TWA to the question whether frontier automata can recog-
nize the language K. It will allow us to work directly on K.
In particular, all trees considered afterward will be blank
trees.

PROPOSITION 2. If a tree-walking automaton recognizes L,
then K is a positive boolean combination of languages recog-
nized by frontier automata.

The proof of this statement follows by inspecting runs of a
tree-walking automaton over pattern expansions. We omit
here the details and only give a sketch of the construction.

As noted before, a tree-walking automaton that recognizes
L must be able separate the sets

{A?:te K} and {A:tZ K} .

However, over trees of the form A%, a tree-walking au-
tomaton moves in a special way, which is dependent on the
relations ya,, 7a, and ya,. Recall from Section 4.2 that
when going from one special node to another (incompara-
ble) one in a pattern expansion, a tree-walking automaton
may be assumed to use a run of the form: first go up to the
greatest common ancestor, then do a (1,0) or (0,1) move in
Ay, and then descend into the destination node. This ac-
counts for the fact that moves in a frontier automaton are of
the form U(0,1)D or U(1,0)D. The fact that U and D are
mixes, and the additional Provisos 1 and 2 are inferred from
the characterizations of T and | presented in Section 4.3.
The positive boolean combination is obtained by decompos-
ing the run of the tree-walking automaton into subruns that
do not visit the root.

6. THE ROTATION

By Proposition 2, in order to show Theorem 2, it is enough
to show that we can trick any positive boolean combination
of frontier automata. This is done as follows. We start with
a balanced binary blank tree T of large even depth. Clearly
T belongs to K, therefore it is accepted by frontier automata
Aji,..., A, that make the positive boolean combination in
question true. We then find a node uo in 7" and perform a
rotation at that node. Rotation is the operation depicted in
Fig. 6; it moves the subtrees rooted in 100, uo01 and uol
to the new positions 10, up10 and upll. One can easily see
that the resulting tree 7" is not in K. We will, however,
show that all the frontier automata Aj,..., A, must also
accept T":

U,

AV AVAY

Figure 6: Rotating at node uo

PROPOSITION 3. The tree T' is accepted by all the au-
tomata Ai, ..., An.

This shows that the boolean combination in question could
not have recognized K, thereby proving Theorem 2. In the
rest of this section we describe how to properly choose the
node ug. Then, in Section 7, we prove Proposition 3.

We consider two blank trees s,t equivalent if we can re-
place s by t in any context and none of the frontier automata
Ai, ..., A, can tell the difference (in terms of accepting). A
tree t is fractal if it contains a subtree equivalent to itself.
All complete binary trees of large enough depth are fractal.

Given a frontier automaton, we say that one state is reach-
able from another if they can be connected by a sequence of
nonempty moves. A strongly connected component (simply
a component from now) is a maximal set of pairwise reach-
able states. With each of the frontier automata A; that
accept 1" we associate an accepting run w;. We say a run w;
changes components below a node w if it contains two suc-
cessive configurations (u,p), (v,q) such that p and ¢ are in
different components and w is an ancestor of either u or v.

We require the node ug to satisfy the following constraints:

1. For |u] < 2, the subtree of T rooted in uou is fractal;
2. The node ug is below the node 01010101;
. The runs w; do not change components below uo;

3
4. The first and last leaves visited by each run w; are not
below ug.

Since the number of times a run can change components
is bounded by the number of these components in the au-
tomaton, one can find a node satisfying the above properties,
provided that the tree T is sufficiently big.

We say that a component I' of an automaton A cannot
detect the rotation if for every two leaves v,w in T — or,
equivalently, in 7" — not below the node uo, the following
holds for all states p, ¢ in the component I':

(p7 U) :>?/ (q,’lU) .

Since none of the runs w; change components below the
node uo, in order to prove Proposition 3 it is enough to show
that no component of the automata A4, ..., A, can detect
the rotation. The rest of this paper is devoted to showing
this.

(p,v) =7 (g, w) implies

N
w
IS}

<
Il
™

*

~—

™
o
[e=)
=
*

[
™
—_ —
*
—~ =
= O
(=
=
—_ =

™
—_
N
*

AYAR

L=

. =((0,e) + (1,))"(0,1)(¢, 0)
ﬂ = ((07 5) + (1v5))*(17 0)(6v 1)*
1= (1,70, 1)((,0) + (&, 1))
1 =1(0,8)"(1,0)((£,0) + (&, 1))"
n = ((07 5) + (17 6))*(07 1)(67 1)*
[1=1((0,¢) + (1,€))"(1,0)(,0)"
[1=1(0,6)7(0,1)((¢,0) + (&, 1))
[=(1,)70,1)((,0) + (¢,1))"

Figure 7: Elementary moves

7. FRONTIER AUTOMATA CANNOT
DETECT THE ROTATION

Before we proceed to show that frontier automata can-
not detect the rotation, we need to define the additional
properties (Provisos 1 and 2) of frontier automata that were
announced in Section 5. The first proviso will allow us to
perform a case analysis in the proof of Proposition 3. Gen-
erally speaking, it says that each move can either be decom-
posed as a union of the moves in Figure 7, or it contains
what we call ‘a shift’. The second, more technical, proviso
will be used to solve the components with a shift.

The basic moves of the decomposition are listed in Fig-
ure 7. The move Stay corresponds to the automaton staying
in the same leaf. The moves {] and [] correspond to jump-
ing respectively to the next and the previous leaf. The other
moves are slightly more complex.

We denote by #:(v) the number of the leaves in the tree ¢
that are lexicographically before v. We denote by #:(u,v)
the offset from w to v within ¢, i.e. #¢(v) — #¢(u).

DEFINITION 12. A move offset of a move M is an inte-
ger i such that uMwv holds for any two leaves u and v that
satisfy #¢(u,v) = ¢ in some tree t. We write moff(p, q) for
the set of move offsets of 6(p,q). We say that a move from
p to q contains a shift if moff(p, q) contains two successive
integers.

For instance, any move containing [/ has 1 in its move
offset. We now state the properties satisfied by all moves in
frontier automata that were announced in Section 5 but not
defined or used up till now:

PRrROVISO 1. For any two states p and q the set moff(p, q)
contains one of {—2,—1,0,1,2} and

e cither is a union of some of the moves Stay, {], I,

(T, L6 XL X L0 T, T (see Fig. 7);

e or contains a shift.

PRrOVISO 2. Let (p,u), (q,v) be two configurations in a
tree t such that (p,u) — (q,v). If #+(u,v) > max(moff(p, q))
then §(p, q) contains a right move not contained in Y] . Sym-
metrically, if #+(u,v) < min(moff(p,q)) then d(p,q) con-
tains a left move not contained in Y] .

Using the first proviso, we divide all components into two
categories: components with a shift, i.e. those where moff (p, q)
contains a shift for some states p, ¢; and components with-
out a shift. Proposition 3 is then proved in the two following
sections for each of the two categories. The second proviso
is used in the section on components with a shift.

7.1 Componentswith a shift

In this section we fix a component I with a shift and prove
that it cannot detect the rotation. In order to do this, we
extend the definition of move offsets to run offsets, where
more than one move can be used. A run offset between
state p and state ¢ is defined as a move offset (Definition 12),
except that: 1) uMwv is replaced by (p,u) =+ (¢,v); and 2)
the leaves u and v are required to have at least n leaves both
to their left and right (n being the number of states in the
component). The set of run offsets between states p and g is
denoted roff(p, ¢). Note that all leaves in T" that are below
01 (in particular below ug) satisfy assumption 2).

A pair of states (p,q) is a right-teleport if roff(p, q) con-
tains all but a finite number of positive integers. The pair
(p,q) is a left-teleport if roff(p,q) contains all but a finite
number of negative integers.

LEMMA 13. If a component ' contains a shift, either all
pairs of states from I' are right-teleports, or all are left-
teleports.

Proof We have the following facts for any states p, ¢, r:
moff(p, ¢) C roff(p,q) and roff(p, q¢)+roff(¢q,r) C roff(p,r) .

Using this, connectedness of the component I', and Pro-
viso 1, we obtain that roff(p, ¢) is nonempty for any p,q € T.
We deduce from this that for any state p in I', the set
roff (p, p) is closed under addition and contains two consecu-
tive values. It follows by some simple arithmetic that (p, p)
is a teleport. This extends to any pair of states in I". [

Let us assume without loss of generality that all pairs of
states in ' are left-teleports, i.e. all sets moff(p, q) contain
almost all negative integers. Let d € N be the greatest
number such that —d does not belong to some set moff(p, q)
for p,q € I'. By inspecting the proof of Lemma 13, one can
see that d is quadratic in the size of |I'|. The number d has
the property that whenever v,w > 01 are two leaves of T’
or T' such that #r(w,v) < —d, the automaton can go from
(p,w) to (g,v), regardless of the states p,q € I.

We now proceed to show that the component I' cannot
detect the rotation, i.e. that the implication

(p7 ’U) :>#’ (qv ’LU)

holds for any two nodes v, w not below ug, and any two
states p, ¢ of the component I'.

The difficult case is when v is one one side of the subtree
of up and w is on the other side. If v is to the right and w to
the left of up, then we are done, since the number of leaves
in 7" separating v and w is at least d. The difficult case is
when v is on the left side of the subtree of ug and w is on the
right side (see Fig. 8), and moreover no pair of states from
I' is a right teleport. In this case a special trick is needed
that uses Proviso 2 and the assumption on uo being below
01010101.

By assumption we have a run going from (p,v) to (g, w)
in T. Since w is sufficiently far to the right of v, this run

(p,v) =7 (g, w) implies

Ao

Gy " @)

Figure 8: The run from (p,v) to (¢, w)

must use a step of the form

(ryu) — (r',u) with #¢(u,u') > max(moff (u, u")) ,

because otherwise there would be a state s € I" with moff (s, s)
containing a positive integer, contradicting the fact that I"
contains no right teleport. By Proviso 2 we infer that §(r, ")
contains a right move M not contained in {] .

Our objective is to use this move M in order to “jump”
above ug. For this, we use the following lemma.

LEMMA 14. There exist in T two leaves u and u' below
01 such that uMu' and, moreover, for any leaf v below uo,

#r(u,v) < —d and #r(v,u') < —d .

Proof Let U(0,1)D be one of the components of the move
M, with U, D being mixes of {(0, ¢), (1,¢)} and {(¢, 0), (¢, 1) }
respectively. By the definition of mixes, a right move not
contained in [/ must contain one of the following languages:

(’i,E)*(l - i’E)(Ov 1)(57.7)*

(4,€)7(0, 1)(e, j)(e, 1 = 5)"
(0,€)"(0,1)(c,0)%, (0,€)"(0,1)(¢,1)", or

fori,j =0,1
fori,j =0,1
(1,6)"(0,1) (e, 1)".

Uo

Figure 9: The move from u to u’

The lemma is proved by case analysis as to which one of
the above is contained in M. We only do the case of the set
(0,£)*(0,1)(e,0)", the other ones are similar. Let u be the
leftmost node below 01 and let u’ be the leftmost node below
011 (see Fig. 9). Clearly both nodes are below 01. One can
easily verify that uMwu' holds. Finally, let v be any node
below wug, in particular below 01010101. Since all nodes of
the subtree 0100 — and there are more than d of them — are

between u and v, we obtain #r(u,v) < —d. Similarly, all
nodes of the subtree 01011 are between v and u’, therefore
we also have #r(v,u’) < —d. O

We are now ready to show that the component I' cannot
detect the rotation. If the run corresponding to (p,v) =7
(¢, w) never visits a leaf below ug, then we can use the same
run on 7" and we are done. Otherwise, we use left teleports
to construct a new run in 7" that goes from (p,v) to (g, w).
In order to do so we use the following fact:

FACT 2. There are configurations (p’,v") and (¢, w') be-
low ug such that (p,v) =7 (p',v") and (¢',w') =1/ (q,w).

Proof Let M be a move that goes in T from a node vq
not below uo to a node vz below ug. The part of M that
goes down in a tree is constructed using mixes of the set
{(g,0), (¢,1)}. By the structure of mixes, one can show that
M can also go in T from v to v, where v is either the
leftmost or the rightmost node below ug. Using this prop-
erty, we obtain (p’,v’) from the statement of the lemma by
looking at the first configuration in the run (p,v) =1 (¢, w)
that corresponds to a leaf below ug.

A symmetric argument is used for (¢’,w’), this time using
the last configuration in the run that corresponds to a leaf
below ug. O

[e A~
(v,u) (?;v') (T,w‘) (nu)
Figure 10: The run in (p',v") =7 (¢, w’)

The run in 7" is constructed as follows. First we go from
(p,v) to (p’,v") (using Fact 2). Then we go to the config-
uration (r,u) from Lemma 14; this can be done by a left
teleport, since u is at least d leaves to the left of v’. From
(r,u), we use the move M to go to the configuration (r’,u")
from Lemma 14. Then we use the left teleport to go to
(¢',w’), from where we may safely go to (q,w) by Fact 2.
See Fig. 10 for an illustration of this run. We have therefore
constructed a run in 7’ that goes from (p,v) to (g, w), thus
proving that the component I' cannot detect the rotation.

7.2 Componentswithout a shift

In this section we consider a component without shifts.
According to Proviso 1 the only nonempty moves in the com-
ponent are: Stay, Y, Y,), [, [1, X1, Y1, [, [and
[\. Among these moves, some — called “adjacency moves” —
have an important property which prevents them from de-
tecting the rotation. We now proceed to define adjacency
moves and then to show how they can be used to simulate
other moves.

Let v, w be a pair of nodes such that w is to the right of
v. These nodes can be uniquely decomposed as

v=u-0-1"-7% w=u-1-0"-w

with u being the longest common prefix of v and w and
i,7 being maximal. We say two pairs of nodes (v,w) and
(v',w’) are right adjacency similar if their corresponding
decompositions satisfy ¥ = v/ and w = w’. Two pairs are
adjacency similar if either (w,v) and (w’,v") or (v,w) and
(v',w") are right adjacency similar.

DEFINITION 15. An adjacency move is a move M such
that for every two adjacency similar pairs of leaves (v, w)
and (v',w") we have vMw iff v' Mw'.

LEMMA 16. Stay, Y[, Y[, L, Y1, 11, and [] are adja-

CeENnCyY moves.

w v
Figure 11: Removing non-adjacency moves

We will now eliminate the moves [\, [], []and [}, which
are not adjacency moves. This is done by simulating them
with a sequence of adjacency moves. The following lemma
treats the case of [\ (see Fig. 11 for an illustration of the
proof; the other cases are similar):

LEMMA 17. For a tree t and u,v leaves below 0, u[\v iff
there exists another leaf w such that u[] w and w {] v.

Using this lemma (and the analogous results for /7], [7] and
[\) we can assume without loss of generality that the com-
ponents without shifts only contain adjacency moves. The
following lemma thus shows that a component without shifts
cannot detect the rotation, thereby finishing the proof of
Theorem 2.

LEMMA 18. Let p,q be two states of a component con-
taining only adjacency moves. For any nodes u and v not
below uo, if (p,v) =1 (q,w) then (p,v) =1 (q,w).

Proof Since T' and T" are equal over nodes not below ug, it
is enough to establish the lemma for runs where all positions
but the initial and final one are below ug. In other words,
the first move of the run is used to enter the subtree rooted
in up, the last move is used to exit it, and in between all
moves are below ug.

Let f be the mapping that assigns to a leaf in T a leaf
in 7" with the same number of leaves to the left (i.e. where
#1(v) = #7:(f(v))). This mapping is a bijection. Let V4,
V42 and V3 be the sets of leaves of T respectively below 1000,
1001 and wugl. Let Wi, Wa, W3 be the sets of leaves of T”
respectively below 10,4010 and ugll (see Fig. 12 for an
illustration). One can easily check that f(V;) = W; for ¢ =
1,2,3. We say two leaves v € V; and w € V; are neighbors if
|t — j] < 1. If v,w are neighbors, then the pairs (v, w) and
(f(v), f(w)) are adjacency similar. In particular, whenever
the automaton can go from v to w in one step, then it can

—— ——

DA /A A W, ow, W

Figure 12: The trees T and T"

do this also from f(v) to f(w). Therefore, if a run only does
moves between neighbor nodes then it can be mapped using
f into a valid run in the tree T".

We will transform the run from (p,v) to (¢, w) into one
that also goes from (p,v) to (g, w), but where all moves are
done between neighbor leaves (we call this property (*)).
According to the previous remark, this is sufficient to con-
clude the proof of the lemma.

We will do a case analysis regarding the way the automata
entered and exited the subtree rooted in ug. According to
the definitions of the possible adjacency moves, there are
only three ways of entering the subtree rooted in ug: by
going to the leftmost leaf below ug (using one of {] or []),
to the rightmost one (using one of or {7]) or anywhere
(using one of Y] or []). Similarly, there are three ways to
exit from this subtree. All this results in nine possibilities.
We will treat here only two cases, the others are similar.

e Let us consider first the case where the automaton
enters in the leftmost node v of V1 and leaves by the
same node. We will show that the whole run could
happen in V;.

JAVAVAY

Figure 13: Moving the run to V;

Since the subtree below ug was fractal, it contains a
proper subtree equivalent to itself. Since all subtrees
of T are complete binary trees, we may well assume
that there is a node u on the leftmost branch below
uo, such that the subtree rooted in uou is equivalent
to the subtree in ug. By equivalence, the run that went
from the leftmost node below ug back to this leftmost
node can be assumed to visit only nodes below uou
(see Fig. 13). But such a run satisfies the property
(*)-

All other cases can be solved similarly, except for two:
when the automaton enters in the leftmost leaf be-
low ugp and leaves in the rightmost one, and when the
automaton enters in the rightmost leaf below uo and
leaves in the leftmost one. The first of these is treated
in the next item, the second is symmetric.

e Consider a run that begins in the leftmost node of V3

and ends in the rightmost node of V3. We are going
to construct a similar run satisfying (*). In order to
do this, we will use the following extra property: once
a position in V3 is encountered, no position in Vi is
visited anymore. This property is shown in Lemma 19.

If the run already has property (*), then the problem
is over. Otherwise there is some moment in the run
where two consecutive configurations are not neigh-
boring. Since after visiting V3 we never come back to
Vi, this means that the first configuration is in V7 and
the second in V3. In particular, all of the rest of the
run satisfies (*). We decompose the run as af with
a = (po,vo) - (pk,vx) and B = (qo,wo) ... (qn,wn),
where the subruns « and 8 have property (*), v, € V4
and wo € V3. The only way to go from a position
in V1 to a position in V3 is by using the move [] . This
means that wo is the leftmost leaf in V3. However, if
we want to use the move [] from (pg,vr) and satisfy
the property (*), the only place we can go to is the
leftmost leaf of V5.

In order to complete the proof, we will construct a new
run v that satisfies property (*) and goes from state
qo in the leftmost leaf of V> to state py in some leaf w’
of Va. The sequence ayf is then a valid run satisfying
(*), since the move [] does not care about the position
of the leaf w’ within V5.

Informally speaking, the run - uses the run (8 and frac-
tality to go to some configuration (g.,w"”), with w”
being a node in V5 with sufficiently many leaves of V5
to the left and right. Then, using the fact that I" is a
component, we can use moff (g, px) to go from (gn, w’)
to (pk,w’). We omit the details of this construction.

O

LEMMA 19. Any run in T that begins and ends in V3 can
be modified into one that does not visit V1.

Proof Let A be the subtree of T rooted in uo0 (equivalently

Figure 14: The trees T and S

in uol). Since the subtree rooted in up was large enough,
the tree A is fractal, i.e. has a proper subtree B that is
equivalent to A. Since A is a complete binary tree, we may
well assume that this subtree is rooted in a node u of A on
the rightmost branch. Let S be the tree obtained from 7" by
substituting A for the node uou. This tree is equivalent to
T (see Fig. 14). Let W be the leaves of S below the node
uou. Let g be the unique bijection

g:ViuVhUVs - WUVs

that preserves the left-to-right ordering of leaves. One can
verify that for any pair of nodes from the domain of g, the

image of the pair is adjacency similar to it. Since the compo-
nent of the automaton in question only has adjacency moves,
this means that if the automaton can go from v to w in T,
then it can also go from g(v) to g(w) in S. In particular,
if there is a run p from V3 back to V3 in T, then there is
a run p’ with the same starting and ending point in S that
only visits W U V3. However, since the leaves W in S corre-
spond to A, which is equivalent to the subtree B of uou in
T, we can replace the W part of p’ with one over B, thereby
obtaining a run over 7" that does not visit Vi. O

Acknowledgments

We would like to thank the anonymous referee who carefully
checked and commented the complete proof of the result.

8. REFERENCES

[1] A. V. Aho and J. D. Ullman. Translations on a
Context-Free Grammar. Information and Control, 19,
pp. 439-475 (1971).

2]

3]

[4]

[5]

(6]

7]

M. Bojariczyk. 1-Bounded TWA Cannot Be
Determinized. Foundations of Software Technology
and Theoretical Computer Science, LNCS 2914,

pp. 62-73 (2003)

M. Bojanczyk and T. Colcombet. Tree-Walking
Automata Cannot Be Determinized. International
Colloquium on Automata, Languages and
Programming, LNCS 3142, pp. 246-256 (2004)

J. Engelfriet and H. Hoogeboom and J. Van Best.
Trips on Trees. Acta Cybernetica, 14:1, pp. 51-64
(1999)

J. Engelfriet and H. J. Hoogeboom. Tree-Walking
Pebble Automata. Jewels Are Forever, Contributions
to Theoretical Computer Science in Honor of Arto
Salomaa, Springer-Verlag, pp. 72-83 (1999)

, T. Kamimura and G. Slutzki. Parallel Two-Way
Automata on Directed Ordered Acyclic Graphs.
Information and Control, 49:1, pp. 10-51 (1981)

F. Neven and T. Schwentick. On the Power of
Tree-Walking Automata. International Colloquium on
Automata, Languages and Programming, LNCS 1853
(2000)

