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Fraenkel-Mostowski sets (FM sets) are a variant of set theory, where sets can
contain atoms. The existence of atoms is postulated as an axiom. The key role
in the theory of FM sets is played by permutations of atoms. For instance, if
a,b, c,d are atoms, then the sets

{a,{a,b,c},{a,c}} {b,{b,c,d},{b,d}}

are equal up to permutation of atoms. In a more general setting, the atoms have
some structure, and instead of permutations one talks about automorphisms of
the atoms. Suppose for instance that the atoms are real numbers, equipped with
the successor relation x = y 4+ 1 and linear order z < y. Then the sets

{~1,0,03}  {5.2,6.2,6.12}
are equal up to automorphism of the atoms, but the sets
{0,2} {5.3,8.3}

are not. (In the second example, the two sets can be mapped to each other by
a partial automorphism, but not by one that extends to a automorphism of the
real numbers.)

Here is the definition of FM sets. The definition is parametrized by a set of
atoms. The atoms are given as a relational structure, which induces a notion of
automorphism. (One can also consider atoms with function symbols, but we do
not do this here.) Suppose that X is a set which contains atoms (or contains sets
which contain atoms, or contains sets which contain sets which contain atoms,
and so on). If 7 is an automorphism of atoms, then 7 can be applied to X, by
renaming all atoms that appear in X, and appear in elements of X, and so on.
We say that a set C' of atoms is a support of the set X if X is invariant under
every automorphism of atoms which is the identity on C. (For instance, the set
of all atoms is supported by the empty set, because every automorphism maps
the set to itself.) Equipped with these notions, we are ready to define the notion
of an FM set: a set which is built out of atoms is called an FM set if it has some
finite support, each of its elements has some finite support, and so on recursively.

FM sets were rediscovered for the computer science community, by Gabbay
and Pitts [5]. In this application area, atoms have no structure, and therefore
automorphisms are arbitrary permutations of atoms. It turns out that atoms are

* Author supported by ERC Starting Grant “Sosna”
** Author supported by FET-Open Project FoX, grant agreement 233599



a good way of describing variable names in programs or logical formulas, and
the automorphisms of atoms are a good way of describing renaming of variables.
FM sets are now widely studied in the semantics community, under the name of
nominal sets (the name is so chosen because atoms describe variables names).

FM sets turn out to be a good framework for other applications in computer
science. These other applications have roots in database theory, but touch other
fields, such as verification or automata theory. The motivation in database theory
is that atoms can be used as an abstraction for data values, which can appear in
a relational database or in an XML document. Atoms can also be used to model
sources of infinite data in other applications, such as software verification, where
an atom can represent a pointer or the contents of an array cell.

FM sets are a good abstraction for infinite systems because they have a dif-
ferent, more relaxed, notion of finiteness. An FM set is considered finite if it
has finitely many elements, up to automorphisms of atoms. (The formal defi-
nition is slightly technical, and we skip it here.) We call such a set orbit-finite.
Consider for example FM sets where the atoms have no structure, and therefore
automorphisms are arbitrary permutations. The set of atoms itself is orbit-finite,
actually has only one orbit, because every atom can be mapped to every other
atom by a permutation. Likewise, the set of pairs of atoms has two elements up
to permutation, namely (a,a) and (a,b) for a # b. Another example is the set of
A-terms which represents the identity, with variables being atoms:

{A\a.a : a is an atom},

this set has one orbit. Yet another example concerns automata with registers for
storing atoms, as introduced by Francez and Kaminski in [6]: up to permutation,
there are finitely many configurations of every such automaton.

The language of FM sets is so robust that one can meaningfully restate
all of the results in a textbook on automata theory, replacing sets by FM sets
and finite sets by orbit-finite sets, see [3] for examples. Some of the restated
theorems are true, some are not. Results that fail in the FM setting include all
results which depend on the subset construction, such as determinization of finite
automata, or equivalence of two-way and one-way finite automata. Results that
work in the FM setting include the Myhill-Nerode theorem, or the equivalence
of pushdown automata with context free grammars (under certain assumptions
on the structure of atoms, which will be described below). Under the same
assumptions on the structure of atoms, the theory of computability still works
in the FM setting. More specifically, one can design a programming language
which manipulates orbit-finite FM sets, just like other programming languages
manipulate lists or trees [2]. (This programming language is not a violation of
the Church-Turing thesis — after some translation, the programming language
can be executed on a normal computer.)

1 Non-homogeneous atoms

What are the assumptions on the atoms that are mentioned above, in results
such as the equivalence of pushdown automata with context-free grammars? The



assumption is that the atoms are a homogeneous structure, which means that
every partial automorphism of the atoms extends to a complete automorphism.
For instance, the atoms with no structure are homogeneous, because every par-
tial bijection extends to a complete bijection. Other examples of homogeneous
structures include: the rational (or real) numbers with order, or the Rado graph
(also called the random graph). When the atoms are a homogeneous structure,
then orbit-finite sets are relatively well-behaved, in particular orbit-finite sets
are closed under products and subsets.

When the atoms are not homogeneous, then orbit-finite sets might no longer
be closed under products and subsets. This means that almost all natural con-
structions might fail, e.g. languages recognized by automata with orbit-finite
state spaces need no longer be closed under intersection (or even union in the
case of deterministic automata). In this talk, I will discuss how one can try to
work with FM sets when the atoms are not a homogeneous structure. I will il-
lustrate this on two examples of non-homogeneous atoms, which are presented
below.

1.1 Integers with order and successor

In this section, we assume that the atoms are integers, with the relations
y=x+1 and z <.

The automorphisms of this structure are the translations, i.e. functions of the
form x — z 4+ y, where y € Z. In other words, the automorphism group is
isomorphic to the integers with addition. (Actually, as the reader can easily see,
the notion of FM sets depends only on the automorphisms of the atoms, and
the automorphisms stay the same when one keeps just one of the relations: the
successor or linear order. Therefore, the notion of FM sets would be the same if
we assumed, for example, that only the order relation was allowed.)
These atoms are not a homogeneous structure. For instance, the function

0—20 2+—3

is a partial automorphism, but it does not extend to a complete automorphism.
This leads to all sorts of problems. ! For instance, we cannot use the theorem
that the product of orbit-finite sets is also orbit-finite. Indeed, this is actually
false: the set of atoms Z has one orbit, but the set of pairs of atoms Z x 7Z has
infinitely many orbits, one for every diagonal

{(z,x4+y): 2 €Z} where y € Z.

The notion of finite support trivializes. This is because everything is sup-
ported by the set {0}, because the identity is the only automorphism of integers

! This structure becomes homogeneous if one treats the successor as a function symbol.
However, homogeneous structures with function symbols do not have all the good
properties of homogeneous structures with only relation symbols.



that preserves 0. One troubling consequence is that orbit-finite sets are not
closed under (finitely supported) subsets. For instance, the set of even atoms is
not orbit-finite, but it is contained in the set of all atoms, which is orbit-finite.

Despite these pathologies, one can still try to get some work done.

Let us have a look at finite deterministic automata. Typical orbit-finite sets
include the integers, or the integers modulo some finite natural number. One
can show that these are essentially the only examples: every orbit-finite set is a
finite disjoint union of such sets. Consider then an automaton, where the state
space @ and the input alphabet A are orbit-finite sets. By the remarks above,
we understand what the states and the alphabet look like. What about the
transition function? Unfortunately, every possible function

§:QxA—Q

is finitely supported, since being finitely supported is a trivially satisfied con-
dition, because every set is supported by the set {0}. Therefore, the class of
automata is too rich to be analyzed (in particular, there are uncountably many
automata). To make the class more manageable, let us make two additional
assumptions.

1. The transition function, the initial state, and the set of final states all have
empty support. In other words, all of these objects are invariant under the
action of arbitrary automorphisms of the integers.

2. The transition function is semilinear (under a natural notion of semilinear-

ity).

The first assumption is perhaps natural, the second one is more ad hoc. Under
these assumptions, one can try to do some constructions of automata theory. It
turns out that emptiness is decidable for such automata, even nondeterministic
automata. A more sophisticated result is that minimization of deterministic au-
tomata works, i.e. for every deterministic automaton satisfying the assumptions,
the minimal automaton also satisfies the assumptions, and can be effectively
computed. The minimization algorithm is non-trivial, it relies on decidability of
quantifier-free Presburger arithmetic with divisibility predicates [7]. What is also
interesting, a standard partition-refinement algorithm for minimization fails.

1.2 Real numbers with order and successor

In this section, we assume that the atoms are real numbers, with the relations
y=x+1 r<y.

(The automorphism group of this structure works as follows. An automorphism
is uniquely described by what it does to the half-open unit interval [0; 1), this in-
terval must be mapped homeomorphically to some other half-open unit interval.)
These atoms are not homogeneous for the same reason as the integers. However,
the notion of support does not trivialize, e.g. a subset of the interval [0;1) has



finite support if and only if it is a finite boolean combination of (half-open, open,
or closed) intervals.

It turns out that in FM sets with these atoms, the notion of finite automa-
ton is a generalization of timed automata [1], as introduced by Alur and Dill.
Furthermore, classical results on timed automata, such as the emptiness check,
can be recovered as a special case of more general algorithms working in FM
sets. Finally, and what is perhaps most interesting, some new things can be
done with timed automata which are made possible by the framework of FM
sets. The first new thing is a robust notion of minimization for deterministic
automata, connected with a Myhill-Nerode theorem. The second new thing is a
machine-independent characterization of languages recognized by deterministic
timed automata. These results are included in the paper [4].
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