Effective Characterizations of Tree Logics

Mikotaj Bojahczyk *
Warsaw University, Poland
bojan@mimuw.edu.pl

ABSTRACT

A survey of effective characterizations of tree logics. If £
is a logic, then an effective characterization for £ is an al-
gorithm, which inputs a tree automaton and replies if the
recognized language can be defined by a formula in £. The
logics £ considered include path testable languages, frontier
testable languages, fragments of Core XPath, and fragments
of monadic second-order logic.

Categories and Subject Descriptors
F.4.1 [Mathematical logic and formal languages]: Math-

ematical logic; H.2.3 [Database management|: Languages—

Query languages

General Terms
Languages, Theory

1. INTRODUCTION

We say a logic (such as first-order logic, or CoreXPath)
has a effective characterization if the following decision prob-
lem is decidable: “given as input a finite automaton, decide
if the recognized language can be defined using a formula
of the logic”. Representing the input language by a finite
automaton is a reasonable choice, since many known logics
(over words or trees) are captured by finite automata.

This type of problem has been successfully studied for
word languages. Arguably best known is the result of Mc-
Naughton, Papert and Schiitzenberger [25, 19], which says
that the following three conditions on a regular word lan-
guage L are equivalent: a) L can be defined by a star-free
regular expression; b) L can be defined in first-order logic
with order and label tests; c) the syntactic monoid of L does
not contain a non-trivial group. Since condition b) can be ef-
fectively tested, the above theorem gives an effective charac-
terization of star-free expressions, and first-order logic. This

*Author supported by Polish government grant no. N206
008 32/0810.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODS’08,June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

result demonstrates the importance of this type of work: an
effective characterization not only gives a better understand-
ing of the logic in question, but it often reveals unexpected
connections with algebraic concepts. During several decades
of research on word languages, effective characterizations
have been found for fragments of first-order logic with re-
stricted quantification and a large group of temporal logics,
see [20] and [33] for references.

Probably the most important question for trees is: does
first-order logic on trees have an effective characterization?
There are a number of variants of this question, depending
on the type of tree considered (binary, ranked, or unranked)
and the exact flavor of first-order logic (what predicates are
available: child, descendant, document order). No effective
characterization is known for any of the variants. The only
exception, see [2], is first-order logic where the child relation
is used instead of the descendant relation.

First-order logic on trees and the Potthof example.

To illustrate the idiosyncratic nature of first-order logic
on trees, we present an example due to Potthof [22]. In the
example, the trees considered are finite and binary, i.e. each
node has exactly zero or two children. The first-order for-
mulas will use predicates left(z,y) and right(z,y) for the left
and right children, and = < y for descendants. The variables
in the formula quantify over tree nodes, e.g. the formula

Ve (Jy left(xz,y) = Iz right(z, z))

says that each node x with a left child y also has a right
child z; this formula is a tautology in binary trees.

The Potthof example refers to parity. As is well known,
word languages that refer to parity, such as “words of even
length”, or “words with an even number of a’s” cannot be
defined in first-order logic. For (binary) trees, however, the
situation becomes more complicated. First off, the property
“trees with an even number of nodes” is first-order definable,
for the simple reason that every binary tree has an odd num-
ber of nodes. On the other hand, and in analogy to words,
the property “trees with an even number of a’s” is not defin-
able in first-order logic. However, and this is the surprising
example of Potthof, the property “trees where some leaf has
even depth (i.e. an even number of proper ancestors)” can
actually be defined in first-order logic. The reason is that
this property is equivalent to:

(*) Either the zigzag of the root has even length,
or there are two siblings with zigzags of even and
odd lengths, respectively.

In the above, the zigzag of a node x contains the left child
of x, the right child of the left child of x, the left child of
the right child of the left child of z, and so on until a leaf is
reached. It is not hard to write a first-order formula ¢(x,y)
which says that y is in the zigzag of . The formula is a
conjunction of several conditions, one of which is

—Jy1,y2,y3. © < y1 Aleft(yr, y2) Aleft(ya, ys) Ays <y .

Note that the zigzag has even length if and only if the only
leaf it contains is a left child; therefore the property (*) on
zigzags can be defined in first-order logic.

What conclusions can we draw example above?

A first, and more obvious, conclusion is that trees are more
complicated than words, and require new insights. There are
other examples of unusual tree behavior, some of which can
be found in this survey.

A second, possibly more debatable, conclusion is that
some of the quirky phenomena illustrated above may come
from using binary trees, which have the arbitrary restriction
that each node has either two or zero successors. Maybe
the difference between binary trees and unranked trees—a
cosmetic difference in most other settings—begins to play
a role tackling the difficult problem of effective character-
izations. Accordingly, some of the recent research in tree
logics has moved from binary trees to unranked trees. This
is also the direction chosen by this survey, where most of the
results are about unranked trees. Unranked trees also have
the advantage of being closer to the XML data model.

Scope and organization.

This paper is not a survey of logics for trees, or even of
logics for unranked trees, for which excellent sources are
readily available. The reader interested in an introduction
to the links between automata and logic is referred to [30]. A
survey of logics that focuses on unranked trees can be found
in [17]. In general terms, this survey is about the differences
in expressive power between various tree logics. Specifically,
though, the focus is on finding effective characterizations
of tree logics. Most attention is devoted to those logics
that have known effective characterizations, sometimes at
the cost of more interesting logics without known effective
characterizations.

The paper is organized as follows.

In Section 2, we present the basic definitions. The most
important concept is that of identity, which is illustrated on
three toy logics.

Sections 3-5 contain the core of the paper, a survey of
existing effective characterizations of tree languages. These
are grouped in to three categories. Section 3 is about some-
thing that can be called “pattern testing”, these are lan-
guages like “trees that contain a path in (ab)*”, or “trees
that contain a in a leaf”. Section 4 is about CoreXPath and
its fragments. Section 5 is about first-order and monadic
second-order logic.

Finally, Section 6 presents an undecidability result: it
is impossible to give a “general” algorithm characterizing
classes of tree languages.

2. PRELIMINARIES

The trees in this paper are finite and labeled. The siblings
are ordered, although some logics will not be able to refer to
this order. Some of the trees will be binary (each node has

two or zero children), but most of the time trees will be un-
ranked, where there is no restriction (apart from finiteness)
on the number of children. A forest is an ordered sequence
of unranked trees. The empty forest is denoted by 0. We
concatenate forests using the + symbol.

@=+@=@
@ @ ® @ O @ ® @@ @ ®
© © ©

Forests and trees alike will be denoted by the letters s, ¢, u,
Labels of nodes will be denoted by a,b,c. We use letters
A, B, C to denote the alphabets, i.e. finite sets of labels. A
set L of forests over given alphabet A is called a forest lan-
guage over A.

The notions of node, descendant and ancestor relations
between nodes are defined in the usual way. We use z,y, z
to denote nodes. We write x < y to say that = is an proper
ancestor or y or, equivalently, that y is a proper descendant
of . A path is a set of nodes {x1,...,z,} where z;41 is a
child of x;, for all . A maximal path connects the root with
a leaf.

If we take a forest and replace one of the leaves by a
special symbol [0, we obtain a contert. Contexts will be
denoted using letters p, g, 7. The empty context, where the
only node is the hole, is denoted by [J. A forest s can be
substituted in place of the hole of a context p, the resulting
forest is denoted by ps, as illustrated below:

p s ps
ONNG, Og O
2] O

There is a natural composition operation on contexts: the
context gp is formed by replacing the hole of ¢ with p. This
context satisfies (pq)s = p(gs) for all forests s.

Finally, we also allow concatenating a forest s to a context
p. The result, denoted by s + p is the unique context that
satisfies (s +p)t = s+ pt for all forests t. The concatenation
p + s is defined symmetrically, with (p + s)t = pt + s.

Regular languages.

There are many equivalent definitions of regular tree lan-
guages. We will present two here: languages recognized by
automata and languages with a finite index Myhill-Nerode
congruence. A third definition—in terms of monadic second-
order logic—will appear later on.

The first definition is in terms of automata. A tree au-
tomaton works as follows. Fix an input alphabet A. The
automaton has a finite state space) and a finite set of tran-
sitions of the form L,a — ¢, where L C Q" is a regular
word language, a € A is a letter of the input alphabet and
q € @ is a state. A run of the automaton assigns (nondeter-
ministically) a state to each node of the input tree. These
states have to be consistent with that transition function in
the following sense. Let x be a node with label a and chil-

dren z1,...,Zn, listed from left to right. If the node x is a
assigned ¢ by the run, and the nodes z1, ..., x, are assigned
states qi,...,qn, then there must be a transition L,a — ¢

such that the word ¢; ...gn belongs to the language L. A

run is called accepting if the state assigned to the root be-
longs to a designated set of accepting states. Formally, the
automaton is given by a tuple

(Q,A,0,F) ,

where (@ is the state space, A is the input alphabet, § is
the set of transitions and F C @ is the set of accepting
states. The set of trees accepted by an automaton is called
the language recognized by the automaton. A tree language
is called regular if it is recognized by some tree automaton.

An equivalent definition uses the Myhill-Nerode syntactic
congruence (actually, there will be two congruences, one for
forests and one for contexts). We will use this definition
more often, since it is used in “identities”, the key technical
tool in this paper. Let L be a tree language. Two forests s,
s" are called equivalent under L, written s ~p, &', if

ps€eL & ps' €L

holds for every context p such that both ps and ps’ are trees.
Two contexts q,q" are called equivalent under L, also writ-
ten ¢’ ~r q, if for any forest t, the two forests qt and ¢'t
are equivalent under L. When the language L in question
is clear from the context, we omit the subscript in ~r and
simply write ~. Note the asymmetry in the definition: al-
though the equivalence relation is defined on forests (or con-
texts with possibly many roots), the language L itself only
talks about trees. This is the reason for the clause that re-
stricts the contexts p to ones where both ps and ps’ are trees.
Thanks to this clause, the language “all trees” has only one
equivalence class for contexts, and one for contexts. With-
out the clause the tree language “all trees” would not have
the same equivalence relation as its complement, the empty
language. Using a standard technique, one can show that
a tree language is regular if and only if both its syntactic
equivalences have finite index.

The syntactic equivalences are a congruence with respect
to the operations

s+t DS Pq s+0p p+s

on forests s,t and contexts p,q, as defined in the previous
section. Note that this is a congruence in a two-sorted alge-
bra (forests and contexts), which is called a forest algebra [8].

We will be using algorithms to reason about the syntactic
congruence. How do we represent a syntactic congruence on
the input of such an algorithm? We have “multiplication ta-
bles” for each of the five operations outlined above, as well
as a mapping, which to every letter a in the alphabet as-
signs the equivalence « class of the context alJ with label
a in the root and a hole below. Note that the equivalence
class of the empty forest (resp. empty context) is uniquely
defined by the multiplication tables, since this is the neu-
tral element for forest concatenation (resp. context compo-
sition). Since every context and forest can be built from the
empty context, empty forest, and contexts alJ, the mapping
« and the multiplication tables uniquely specify the syntac-
tic congruence. The representation of the congruence can
be computed based on an automaton for the language, al-
though the congruence may have exponentially more classes
than the automaton has states (e.g. the tree language “label
a at depth n”).

Identities.

The focus of this paper is to provide identities that de-
scribe the expressive of tree logics. An identity can be seen
as a pumping lemma: it says that one tree can be replaced
by another, and the logic will not notice.

We begin our discussion with a simple identity, called com-
mutativity, which will be used many times in the paper:

s+t ~ t+s.

This identity should be read as follows: in any situation,
the forest s+t can be replaced by the forest ¢ 4+ s. In other
words, the language is closed under reordering children.

In the identities, the letters used for the variables will
implicitly identify the type of the variable. Unless otherwise
stated, variables s, t and u stand for forests, while p, ¢ and
r stand for contexts. Note that in the particular case of
commutativity, restricting quantification to only trees would
have the same effect.

Below we present three toy logics, with their simple char-
acterizations expressed in terms of identities. The idea is
to successively demonstrate the concepts that will appear
in our effective characterizations. The first example is the
class of languages that only depend on the set of labels in
the tree; this example is characterized by two simple iden-
tities. In the second example, we introduce the w exponent
into the identities, a way of talking about loops in an iden-
tity. In the third example, we use a language class that is
not closed under boolean operations; in particular, we need
to use implications rather than identities.

Theorem 1

A regular tree language is definable by boolean combination
of clauses of the form “the tree contains label a” if and only
if it satisfies the identities

pq ~ gp pp ~ D .

Note that although the identities are tested for a tree lan-
guage, the variables p and ¢ quantify over contexts that may
have several roots. This will be true later on in the paper
as well: when a forest or context is not explicitly restricted,
then it can have any possible number of roots.

Proof

The “only if” part, as is usual in such results, is clear, since
both sides of each identity have the same set of node labels.
For the “if” part, we will show that the identities above imply
that any tree t is equivalent to one in a normal form, which
only depends on the set of labels in ¢. The first step on the
way to the normal form is that each forest is equivalent to
one of the form a; + - -+ + a,. The proof is by induction on
the depth of the forest, with the induction step:

at=(a0)(O+t)0~ (O+¢)(ed)0=a+1.

In a similar way, the root of a tree can be swapped with any
other node. Since pq ~ ¢p implies s +t ~ t + s, by taking
p =0+ s and ¢ = O + ¢, the labels can be ordered in any
way. Finally, duplicates can be removed by pp ~ p. []

Before we proceed to the next class, we remark on how
the identities give an effective characterization. Take for
instance the identity pq ~ ¢p. How do we know if this
identity is satisfied by a regular tree language L? We cannot
test all contexts p, g, since there are infinitely many of them.

The solution is that we only need to test one context in
each equivalence class, since the syntactic equivalence is a
congruence. Therefore, such an identity can be tested in
polynomial time based on the syntactic congruence.

The second toy example is the definite languages. A lan-
guage L is called definite if there is some threshold k € N
such that membership ¢ € L depends only on the nodes of
t that have depth at most k. Note that trees are unranked
here, so a definite tree language can have an infinite number
of trees of any given depth. For instance, the language “the
root has an even number of children” is definite.

Theorem 2
A regular tree language is definite if and only if it satisfies
the identity
p“0 ~ p“t if p has the hole not at the root. (1)
The characterization above introduces a new feature into
the identities, the w power. Informally, the w power should
be substituted for “a large number”. For instance, iden-
tity (1) says that if a context is repeated many times, then
its argument is deep in the tree and therefore irrelevant.
The formal definition of the w power involves idempo-
tence. It is not difficult to show that for any regular lan-
guage L, there is some number n, such that p" ~p p"p"
holds for any context p. This number n is denoted by wr,,
with the subscript omitted when L is clear from the context.
Note that w also works for forest concatenation, since the
w-fold concatenation of ¢ is the same as (¢ + 00)“0.

Proof

If a language is definite, then the identity (1) has to be
satisfied. Otherwise, for some context ¢, and any k, only
one of the two trees gp**0 and gp“*t, which agree up to
depth k, would belong to the language.

For the converse implication, take a tree language that
satisfies identity (1). We will show that for some sufficiently
large depth k € N, any modification of a tree below depth k
does not affect membership in the language. In other words,
we need to show that if a context p has the hole at depth
at least k, then pt ~ p0 holds for any forest ¢. Let then p
be a context with the hole at depth at least k. The result
will follow from the identity in the statement if we manage
to decompose this context as p ~ qi1¢“¢g2. By assumption
on p, there is a decomposition p = p; - - - pg, such that none
of the contexts p; has the hole at the root. Since there is
a finite number of equivalence classes under ~, Ramsey’s
theorem says that if k is sufficiently large, then there are
some ¢ < j<linl,..., k with

Pl Djo1 ~Dj Pl ~ DL DIl -

Let ¢ =p1---p;j—1. By the above, we have
qul...pl71:q.pjfl."plleqq'

In particular, we have ¢ ~ ¢“. []

Apart from introducing the w power, identity (1) also re-
stricts the contexts to a certain subclass, in this particular
case contexts that do not have the hole at the root. Does
this pose a problem for effectiveness of the characterization?
Fortunately, even such extended identities can be effectively
checked: using the multiplication table and the mapping
« described in Section 2, we can use a fix-point algorithm
to determine the equivalence classes that contain a context

with the hole not at the root. So the characterization given
by (1) is an effective characterization.

The last toy example concerns tree languages with a finite
number of trees. In this case, we cannot hope for charac-
terizations stated in terms of identities, because the class
is not closed under complementation. The reason is that
any tree language has the same syntactic congruence as its
complement, and therefore also satisfies the same identities.

Theorem 3
A regular tree language is finite if and only if it contains no
tree of the form qp“s, with p nonempty.

The proof of the above theorem follows the same lines as
in Theorem 2. Note that a nonempty context may have the
hole at the root, this type of context is needed to prove the
above theorem for languages with unbounded node outde-
gree.

3. LOOKING FOR PATTERNSIN TREES

In this section, we give effective characterizations for three
classes of languages. In each case, the language class is given
by boolean combinations of clauses which examine if the
tree contains a given pattern. The patterns discussed are: a
subtree, a piece and a maximal path.

Frontier testable languages.

Previously, we have talked about definite languages, which
only depend on the prefix of the tree up to some given depth
n € N. What about suffixes? It is not obvious what the
suffix of a tree is. One idea is to look at the n-frontier,
which is the set of subtrees with at most n nodes. A subtree
is a tree obtained by picking a new root, and removing nodes
not below that new root.

O;) (@]
g is a subtree of

A language is called frontier testable if for some n € N,
membership in the language depends only on the n-frontier
of a tree. Note that we do not count the subtrees in the
frontier, as a multiset would, but just test which ones are
present, and which ones are not. An equivalent definition is
that a language is frontier testable if it is a finite boolean
combination of languages of the form “trees that contain s
as a subtree”.

Any finite tree language is frontier testable. For instance,
the (singleton) tree language “one node with label a” is the
same as ‘no subtree with at least two nodes” intersected with
“at least one subtree with label a”.

Frontier testable languages have the distinction of being
the first non-trivial class of tree languages to get an effective
characterization, in a paper of Wilke [32]. The characteri-
zation of [32] was stated for ranked trees, while below we
present the adaptation to unranked trees.

Theorem 4
A reqular tree language is frontier testable if and only if it
satisfies the following identities.

a(s +p“t) ~ s+p“t (2

pt+s+u ~ ut+s+p“t (3)

pYt+s ~ pt+s+s 4)

In the above, the context p must be nonempty, while a is a
context with an a-labelled root and the hole below.

We only roughly sketch the proof of the theorem above.
The first identity says a node a with many descendants (a
forest p“¢ has many nodes) can be removed without affect-
ing the frontier. The second identity says that the order of
trees in a forest with a lot of nodes is not important. The
third identity says that duplicates of trees can be added or
removed in any forest with a lot of nodes. The key point in
the proof is that for any fixed n, any two forests with the
same frontier can be transformed into each other by repeat-
edly applying the above identities.

Piecewise testable languages.

We now move to a different type of pattern, called a piece.
We say a forest s is a piece of a forest ¢, written s <Xt if s
can be obtained from ¢ by removing nodes. In other words,
there is an injective mapping from nodes of s to nodes of
t that preserves the lexicographic and descendant ordering
and the labels.

@] O;) O
is a piece of iﬁ

A tree language is called piecewise testable if it is a finite
boolean combination of languages of the form “trees that
contain forest s as a piece”.

Over words, the piece relation corresponds to taking a (not
necessarily connected) subword. Piecewise testable word
languages were studied by Simon [26], who discovered that
a word language is piecewise testable if and only if its syn-
tactic monoid is J-trivial. This is one of the fundamental
results in algebraic language theory.

The theorem below extends Simon’s result to trees. The
statement uses the piece relation on contexts, which is de-
fined as for trees, but with the added requirement that the
injective mapping preserves the hole.

Theorem 5 ([6])
A regular tree language is piecewise testable if and only if it
satisfies the identity
ap” ~ p* ~ p“q forq=p (5)
The idea in the “only if” is that for any fixed n € N, the
contexts gp“, p* and p“q all have the same pieces of size n,

and can therefore be used interchangeably. The “if” proof
requires a complicated combinatorial argument.

Path testable languages.

The last type of pattern we consider, paths, makes no
sense for words and is unique to trees. The idea is to as-
sociate with each (maximal) path in a tree the sequence of
labels on the path (say, from root to leaf). For instance, the
maximal paths in

0
@)
® ©

are ba, bbb, bbc and ba. A tree language over an alphabet A
is called path testable if it is a finite boolean combination
of languages “trees where some maximal path in the tree
belongs to the (regular) word language K C A*”.

For instance, the tree language “some node has label a”
is path testable, since a tree belongs to this language if and
only if some maximal path belongs to the language A*aA*.
However, the forest language “the forest has two nodes with
label a” is not path testable, since the forests a and a + a
both have the same maximal paths, but only one belongs to
the language.

Theorem 6 ([8])
A regular tree language is path testable if and only if it sat-
isfies the identities

s+t ~ t+s s+s ~ s (6)

p(s+t) ~ ps+pt (7)

Proof

The “only if ” part is clear, since both sides in each identity
have the same maximal paths. For the converse implication,
one shows that using the above identities, any two trees can
be transformed into each other as long as long as they have
the same maximal paths. []

Path testable languages are especially interesting for bi-
nary trees, so for a moment we make an exception and con-
sider binary trees instead of unranked ones. For binary trees,
we modify the notion of path a bit: the path not only says
for each node what its label is, but it also has a bit indicating
if a node is a right child. For instance, in the tree

the three maximal paths are

(a,0)(a,0) (a,0)(a,1)(a,0) (a,0)(a,1)(b;1) .

Therefore, a property of a path in a binary tree can be iden-
tified with a word language L over an alphabet A x {0,1}.
Any finite set of binary trees is path testable, since the set
of paths (with the child number indicators) uniquely deter-
mines a tree; this not the case for the languages in Theo-
rem 6, since any nonempty language that satisfies the iden-
tity s + s ~ s is infinite.

Why do we include the child number for binary trees?
The reason is that these path-testable languages are closely
connected to top-down deterministic tree automata. One
can easily show that regular language of binary trees is rec-
ognized by a top-down deterministic tree automaton if and
only if it is universally path testable, i.e. a language of the
form “all maximal paths belong to K, for some regular word
language K over Ax {0, 1}. In particular, a regular language
L of binary trees is recognized by a top-down deterministic
tree automaton if and only if L is the same as the language

L' = {t : each maximal path in ¢ appears in some tree s € L} .

Every maximal path in (a + b)*ac(a + b)*

Some a has child with a

Root has child with a

descendant + child

descendant

descendant + ancestor

At least one a
Some maximal path in a*

Figure 1: Fragments of CoreXPath

This observation gives an algorithm deciding if a tree lan-
guage is recognized by some deterministic top-down automa-
ton: compute L’ then test if L = L’. Is there a similar ef-
fective criterion for boolean combinations of such automata,
i.e. arbitrary path testable languages? This is an open prob-
lem:

Problem 1 Decide if a given regular language L of binary
trees is path testable with child numbers or, equivalently, if
it is a finite boolean combination of languages recognized by
deterministic top-down automata.

We end our digression into binary trees. From now on all
trees will be unranked again.

4. CORE XPATH AND FRAGMENTS

Some of the most successful work on effective characteri-
zations has been devoted to fragments of Core XPath, intro-
duced in [14]. The statements in the papers cited below are
usually in terms of temporal logic (e.g. EF is written instead
of descendant), but here we rephrase the results in the lan-
guage of Core XPath to provide a common framework. We
will omit the word Core and simply say XPath from now on.

The basis of XPath is a set of eight azes, which describe
spatial relationships between nodes in a tree. The first four
axes are

child parent mnextSibling prevSibling .

In a given tree, an axis specifies a binary relation on tree
nodes in the natural way (the next sibling is the next one to
the right; there is at most one next sibling). The remaining
four axes are obtained by applying transitive closure to the
first four:

descendant ancestor right Ileft .

The transitive closure above is without reflexivity, so for
instance descendant is for proper descendants. XPath is
usually given with more axes, but the others can be defined
in terms of the above eight.

The axes are used to inductively build formulas of XPath.
The base formulas of XPath are label tests, i.e. each label
a € A is treated as a formula that selects nodes with label
a. Furthermore, if X is an axis and ¢ is a formula of XPath,
then X¢ is a formula of XPath, which selects nodes that
can be connected to a node satisfying ¢ via the axis X. For
instance, the formula child a selects nodes with an a child.
Finally, formulas of XPath admit boolean combinations. For
instance the formula

b A right a A lefta

selects a node that has label b, but all its other siblings have
label a.

We say a formula of XPath is true in a tree if it selects the
root. Unfortunately, we do not know if there is an effective
characterization of tree languages that can be defined in
XPath.

Problem 2 Decide if a tree language can be defined in
XPath (with all axes).

However, there are effective characterizations for fragments
of XPath with reduced sets of axes. The rest of this section
is devoted to these fragments.

Child.

As a warm-up, we begin with the fragment that is only
allowed to use the child axis. This fragment is better known
as modal logic. In modal logic, childyp is written as G and
—child— is written as Ogp.

With only the child axis, we can only recognize definite
languages, since a formula with k nested child operators
can only inspect nodes up to depth k. However, not all
definite languages can be defined. A simple induction proof
shows that languages definable with only the child must be
bisimulation invariant, i.e. satisfy the identities

s+s ~ s s+t ~ t+s. (8)

It is not difficult to show that this is the only requirement:

Theorem 7

A regular tree language is definable in the fragment of XPath
with the child axzis (i.e. modal logic) if and only if it is
bisimulation invariant and definite.

Descendant.

We now move to a more interesting fragment, where in-
stead of the child axis we can only use the descendant axis.
This fragment, also known as EF, or Gédel-Lob logic, can
look arbitrarily deep into the tree. For instance, the formula
a V descendant a holds in trees with at least one node la-
beled by a. For the moment, we only allow descendant and
not child; the fragment with both axes will be considered
later on.

Theorem 8
A regular tree language is definable in the fragment of XPath
with the descendant azis if and only if it is bisimulation

invariant and satisfies the identity

ps ~ ps+s. (9)

What is remarkable about the above theorem is that none
of the identities use the w power. This is unlike the word
case, where the identity is

u(wv)® ~ uwv(wv)®

for u a nonempty word, see [33].

Actually, the identity s+ s ~ s in bisimulation invariance
is redundant, since it follows from (9) by taking p to be the
empty context. The first version of Theorem 8 was proved
in [7] for binary trees. However, since binary trees do not
lend themselves easily to expressing properties like s+s ~ s,
both the statement and proof in [7] were cumbersome. Once
languages of unranked trees are considered, the situation is
greatly simplified, see [8] for a proof.

Note that the fragment above uses the proper descendant.
Using the non-proper version—i.e. descendant or self—gives
less expressive power. Note that this does not say anything
about the difficulty of giving an effective characterization. A
less expressive formalism may be harder to characterize. Ef-
fective characterizations of XPath with non-proper descen-
dants were given independently by [12] and [34] (both results
are for ranked trees).

Child and descendant.

We now move to the fragment of XPath where both the
axes child and descendant can be used together.

Theorem 9

A tree language is definable in the fragment of XPath with
the child and descendant azes if and only if it is bisimula-
tion invariant and satisfies the identity

(p“qp“r)” ~ pr(p*qp“r)” (10)
for p a context where the hole is not at the root.

In the above identity, p“q and p“r should be interpreted
as two contexts that have a very long common prefix. The
identity says that if two such contexts are alternated suffi-
ciently often, it is no longer relevant which one is chosen as
the root.

The result above was presented in [7] for ranked trees.
The proof for unranked trees follows along similar lines.

Descendant and ancestor.

The axes child and descendant used in the three frag-
ments above can go only down into the tree. In particu-
lar, only the subtree below z is relevant when determining if
node z is selected by a formula. This will no longer be true in

the fragment below, where we use the ancestor axis. Recall
that when defining a tree language, a formula is evaluated
at the root, so it makes no sense to consider the fragment of
XPath with only the ancestor axis.

In the theorem below we use the notion of side-stripping.
This is the process of removing subtrees in a context that
are siblings of an ancestor of the hole, or siblings of the hole
itself. For instance,

J J

is side-stripped from

Formally, side-stripping is defined by the following rules.
For any two forests s,t, the context s + OO (respectively,
O+ s) is side-stripped from a context of the form ¢ + s+ O
(respectively, (0 + s +t). If p’ is side-stripped from p, then
for any context g, the context p’q (respectively, gp’) is side-
stripped from pq (respectively, gp).

Theorem 10 ([4])

A regular tree language is definable in the fragment of XPath
with the descendant and ancestor axes if and only if it is
bisimulation invariant and satisfies the identities

(r9)* ~ (pg)“pr(pe)” (11)

(ra)” ~ (p9)*“(pqd)(P'q)” (12)

if p' (resp. q') is side-stripped from p (resp. q).

5. FIRST- AND SECOND-ORDER LOGICS

We now move from CoreXPath to first-order and second-
order logics. This is the setting were probably the best
known and most important classes of regular languages can
be found.

The most general logic used here is monadic second-order
logic (MSO). A formula of this logic can quantify over indi-
vidual nodes of the tree (first-order quantification), and over
sets of nodes in the tree (monadic second-order quantifica-
tion). It uses predicates (the logic name for axes) to test the
labels of nodes and compare their spatial relationships. For
instance, the formula

Jz z € X Na(z)
X VaVy child(z,y) N\ €e X =y e X
Ve x € X = a(z) V b(z)

says that there is some set of nodes X (capital letters are
used for set variables), which contains a node x with label
a (lower-case letters are used for node variables), is closed
under children, contains an a label and only contains a, b la-
bels. Equivalently, there is some node with label a that only
has b descendants (this property is not equivalent to 3z a(x)
when the alphabet is a, b, ¢). By using the descendant pred-
icate > instead of the child relation, we could express the
above without quantifying over sets

Jz a(z) AVy y >z = b(y) .

A formula that does not quantify over sets, such as the one
just above, is called a formula of first-order logic. This sec-
tion is devoted to studying fragments of monadic second-
order logic and fragments of first-order logic.

Of course the expressive power of a logic depends on the
predicates (i.e. axes) used. We will have a label predicate
a(z) for each letter a of the alphabet, this predicate holds
if the label of node x is a. The other predicates that will
appear are the same as the axes in XPath, and the lexico-
graphic order (which is usually also considered an axis in
XPath, under the name of document order). Since all logics
below use label predicates and node equality, we will not
mention these when specifying the allowed predicates. For
instance first-order logic with the ancestor relation refers
to formulas that can quantify over nodes (but not sets of
nodes), and can use the label predicates, node equality, and
the descendant predicate.

Before we present the results on trees, we do a brief detour
into word languages. We cite the Schiitzenberger theorem,
and use it to argument that first-order logic is the most
important class of regular languages, albeit one which still
does not have an effective characterization for trees.

The reason why we talk about monadic second-order logic
is that it captures exactly the regular languages. This fun-
damental observation was made (for word languages) inde-
pendently by Biichi [9], Elgot [11] and Trakhtenbrot [31].

Theorem 11
A word language is regular if and only if it can be defined in
monadic second-order logic, with the successor predicate.

Note that we could also use the order predicate instead
of the successor, since a position z is after position y if and
only if = is contained in every set that contains y and is
closed under successors.

Theorem 11 sets the stage for numerous classes of regular
languages. These classes are obtained from monadic second-
order logic by restricting the patterns of quantification, the
predicates allowed, or both.

The gold standard for effective characterizations is Schii-
tzenberger’s Theorem [25], which says that star-free word
languages correspond to aperiodic monoids. We present
this theorem below in an expanded version, which includes
two other theorems, due to McNaughton and Papert [19]
(equivalence of first-order logic and star-free languages) and
Kamp [16] (equivalence of LTL and first-order logic).

Theorem 12
The following are equivalent for a reqular word language L.

1. L is definable in first-order logic with the order predicate.
2. L is definable in linear temporal logic LTL.

3. L is star-free, i.e. can be defined by a reqular expression
without the Kleene star, but with complementation.

4. The syntactic monoid of L is aperiodic, i.e. the identity
v* ~ vt holds for every word v.

The heart of the theorem is the equivalence with item 4.
Since one can effectively calculate the syntactic monoid of
a regular word language, and then check if it is aperiodic,
it follows that all the first three language classes have an
effective characterization.

Note that equivalence of aperiodic monoids with first-
order logic follows quickly from Schiitzenberger’s Theorem:
a star-free expression can easily be captured by first-order

logic, while an Ehrenfeucht-Fraisse game shows that a first-
order definable language must have an aperiodic syntactic
monoid. Bringing LTL into the loop requires more work, ba-
sically showing that languages definable in LTL are closed
under concatenation.

One of the principal open problems in the study of tree
logics is finding a tree generalization of the above theorem.
A first question, of course, is what are the tree counterparts
of the language classes described above. Probably the most
canonical extension is for first-order logic. Here we will be
most interested in first-order logic with the descendant pred-
icate, but one can also consider other sets of predicates.

There is evidence supporting the choice of first-order logic.
A notion of star-free regular expression can be developed
for trees that matches the expressive power of first-order
logic [3]. First-order logic and the star-free expressions are
also matched by a branching extension of LTL, similar to
CTL*, which was first introduced for binary trees in [15],
and generalized to unranked trees in [1].

But what about the last condition in Theorem 12, on ape-
riodic monoids, which makes the characterization effective?
Aperiodicity on its own is a necessary, but not sufficient con-
dition. Finding the correct condition is the principal open
problem mentioned in this paper:

Problem 3 Decide if a given regular language can be de-
fined in first-order logic with the descendant order.

This is just one of the versions of the problem, others are
obtained by modifying the set of predicates allowed (but
keeping the descendant), or passing to a temporal logic syn-
tax like CTL*.

In the rest of this section, we discuss in more detail the
various fragments of monadic second-order logic, and what
is known about their effective characterizations.

Second-order logics on trees.

This section is devoted to fragments of monadic second-
order logic, which still require use of set variables.

Theorem 11 extends to unranked trees, just as it extends
to other objects (e.g. infinite words and infinite trees).

Theorem 13

A tree language is regular if and only if it can be defined in
monadic second-order logic, with the child and next-sibling
predicates.

Again, there is some freedom in the choice of predicates.
The child predicate could be replaced by the descendant
predicate, and the next-sibling by any of the other axes that
move to siblings.

In Theorem 13, the logic uses both the child and next-
sibling predicates. What if drop the next-sibling predicate?
If we only have the child predicate, we can no longer reason
about the order between siblings, so the languages defined
will be commutative, i.e. satisfy s +t ~ t + s. Does the
converse implication hold? The answer is no: the language
“the root has an even number of children” is clearly com-
mutative, but cannot be defined in monadic second-order
logic with only the child predicate. What do we need to
add to monadic second-order logic with the child predicate
to get exactly the commutative tree languages? The answer
is modulo counting, which is defined as a new quantifier

F"z. p(z) that makes a formula true if the number of nodes
x satisfying ¢(z) is divisible by n. Note that the formula
¢(z) may have free variables (possibly set variables) other
than just x, which can be used as parameters.

Theorem 14 ([10])

A regular tree language is definable in monadic second-order
logic with the child predicate and modulo counting if and only
if it satisfies the identity

t+s ~ s+t.
Furthermore, if the language also satisfies
w't ~w-t+1t,
then modulo counting is not needed.

Monadic second-order logic can quantify over arbitrary
sets of nodes. What if we restrict quantification to sets of a
special form? There are two important logics of this type.
The first is antichain logic, where set quantification is re-
stricted to antichains, i.e. sets of nodes pairwise incompara-
ble with respect to the descendant predicate. The second is
chain logic, where set quantification is restricted to chains,
i.e. sets of nodes pairwise comparable with respect to the
descendant predicate.

We begin our discussion with antichain logic.

Over trees where each non-leaf node has at least two chil-
dren, antichain quantification has the same power as full set
quantification, so antichain logic captures exactly the regu-
lar languages, as shown in [23]. The general idea is to encode
a non-leaf node = as the rightmost leaf below the leftmost
child of . This gives a one-to-one correspondence between
non-leaf nodes and leaves, so any set of nodes can be en-
coded as two sets of leaves (which are antichains): one for
leaf nodes, and one for non-leaf nodes.

Over unary trees—trees where each non-leaf node has ex-
actly one child—quantifying over antichains is the same as
quantifying over single nodes, so antichain logic has the same
expressive power as first-order logic.

What about arbitrary unranked trees, which can contain
some nodes with one child and some nodes with more than
one child? It turns out that the two observations above can
be combined: a language of unranked trees can be defined in
antichain logic if and only if it behaves like first-order logic
on the unary parts of the tree.

Theorem 15
A regular tree language is definable in antichain logic if and
only if it satisfies the identity

w w—+1
P o~ pt

for p a unary context. (13)
In the above, a unary context is one where all nodes except
the hole have exactly one child.

We now turn to chain logic. Chain logic was introduced
in [29]. We focus here on chain logic that has only the de-
scendant predicate, although the discussion is similar for
most other choices of predicates.

Chain logic properly extends first-order logic. For in-
stance, any path-testable language (such as “some path has
an even number of a’s”) can be expressed in chain logic. The
formula uses chains to describe the run of a word automaton
on some path.

Chain logic is also strictly weaker than monadic second-
order logic (i.e. it does not capture all regular tree lan-
guages). Tree languages that cannot be defined in chain logic
include “trees with an even number of a’s”, or the language
with boolean expressions described in the next section. Un-
fortunately, we do not have an effective characterization of
chain logic.

Problem 4 Decide if a given regular tree language can be
defined in chain logic.

A word can be seen as a unary tree. In this interpretation,
any set of nodes is a chain, so chain logic captures all of
monadic second-order logic. This way, chain logic can be
viewed as one of the tree logics that collapse to monadic
second-order logic on words (of course monadic second-order
logic on trees is another). There is other evidence supporting
the importance of chain logic, such as a characterization in
terms of regular expressions [3], or its equivalence with the
temporal logic PDL. We briefly present PDL logic here, since
it sheds some light on the type of languages that can be
defined in chain logic.

As in XPath, a formula of PDL selects a set of nodes in
a tree. The inductive definition is as follows. Any label a
is a PDL formula, which selects nodes with label a. PDL
formulas allow boolean combinations. Finally, PDL formu-
las allow testing paths against regular word properties, and
these word properties may nest smaller PDL formulas. More
formally, if T' is a finite set of PDL formulas, and L C T'*
is a regular language, then E L is also PDL formula. This
formula selects a node z if there is a path xix2 - - - xx with
x1 =z and a word p1p2 - -+ pr € I'" such that each node z;
is selected by ¢;. (Recall that consecutive nodes in the path
are connected by the child relation.) For instance, the node
x below is selected by E L if the word @123 belongs to L.

T _ 0O
1

2
o3

In the semantics, it is not necessary for the path to reach a
leaf, but a PDL formula can test if a node is a leaf, using
the formula —E true - true.

It is not difficult to show that for every PDL formula there
is an equivalent formula of chain logic. The converse does
not hold, because languages definable in PDL are bisimu-
lation invariant, unlike those definable in chain logic. But
this is only a superficial difference, which disappears once
we extend PDL by operators of the form “at least k children
are selected by ¢”, for all k € N. In particular, over binary
trees PDL is equivalent to chain logic [15], since the new
operators are redundant for binary trees.

First-order logics.

In this section, we talk about formulas of first-order logic,
where variables can quantify only over individual nodes, and
not sets of nodes.

Using a standard Ehrenfeucht-Fraisse game, one can show
that no formula of first-order logic with descendant can de-
fine the language “some leaf has even depth”. The idea is
that a formula with n quantifiers cannot tell the difference

between two unary trees of depths 2" and 2™ 4 1, respec-
tively. Therefore, first-order logic forms a proper subclass of
all regular languages. This subclass is very robust, and may
well be considered the most important subclass of regular
tree languages. As we already mentioned, first-order logic is
not known to have an effective characterization, for any set
of predicates that includes the descendant.

Proposition 16 A regular tree language definable in first-
order logic must satisfy the identity

pe o~ pth. (14)

The above result holds for any set of predicates taken from
axes in CoreXPath. Identity (14) is equivalent to saying
that the syntactic equivalence on contexts gives an aperiodic
monoid. In particular, if the language contains only unary
trees, then the above condition is also necessary.

However, in general, condition (14) is only necessary, and
may not be sufficient. Consider, for instance, the set of trees
over an alphabet V, A, 0 and 1 that contains the well formed
boolean expressions that evaluate to 1, such as

This set of trees is not definable in first-order logic, although
it satisfies a stronger identity than (14), namely pp ~ p.
We now give another example. If a language is defin-
able in first-order logic with the descendant order, then it
is commutative, i.e. satisfies s + ¢ ~ t + s. The reason is
that the logic can only compare nodes vertically, so it has
no way of comparing the order between siblings. Now take a
language L that is defined in a richer signature, say the de-
scendant order and the next-sibling, which also happens to
be commutative. Is L necessarily definable by using only the
descendant order? The answer to this question is negative.

Proposition 17 A commutative tree language definable in
first-order logic with descendant and next-sibling need not
be definable with just the descendant.

Proof

Let L be the set of binary (i.e. each node has two or zero
children) trees where some leaf has even depth. This lan-
guage is clearly commutative. Using the zigzag trick de-
scribed in the introduction, it can be defined in first-order
logic using the descendant order and next-sibling predicates
(the next-sibling is used to talk about left and right chil-
dren). Using an Ehrenfeucht-Fraisse game, one can show
that a first-order formula with n quantifiers that only uses
the descendant predicate cannot tell the difference between
two complete binary trees, one of depth 2" and the other of
depth 2™ + 1. [

The language in the proof above also falsifies another con-
jecture, as shown below.

Proposition 18 A tree language definable in chain logic
that satisfies (14) need not be definable in first-order logic
with descendant.

Even number of a’s
Two leaves at even depth

Chain logic

Some path with (ab)*

Some leaf at even depth

Figure 2: Expressive power of tree logics.

Proof

We take the same language L as in Proposition 17. The
only non-obvious part is that L satisfies (14), which seems
unlikely for a language involving parity. The catch is that
the trees need to be binary. Take then a context p. The
interesting case is when the hole in p is at odd depth, say it
is a child of the root. Either the hole has a sibling, or there
are two root nodes in p, since otherwise p?,p?, ... would
be equivalent as “error” contexts. (An “error” context is
one that cannot appear inside any tree in the language, in
this case due to a node with only one child.) But then the
contexts p?, p°, ... would all be equivalent, since each would
have leaves at both odd and even depth.]

First-order logic with child.

While an effective characterization of first-order logic with
descendant is a widely open problem, there has been much
more success for logics without the descendant predicate.
The most notable example is first-order logic with the child
predicate.

If only the child predicate is allowed, then first-order logic
can only express “local” properties. By the Gaifman Local-
ity Theorem [13], first-order logic with the child predicate
captures exactly the locally threshold testable languages. A
locally threshold testable language is a finite boolean com-
bination of languages of the form “the root is selected by ¢”
or “at least k£ nodes are selected by ¢”, where the threshold
k is a natural number, and the local property ¢ is a formula
of XPath using only the child axis. A typical property that
can be defined in this logic is “at least five nodes have la-
bel a and exactly three children”. On the other hand, the
property “some leaf has all ancestors with label a” cannot
be defined, at least as long as the alphabet is a, b.

Benedikt and Segoufin [2] give an effective characteriza-
tion of first-order logic with the child predicate, or equiva-
lently, of the locally threshold testable languages. The idea
behind their identities is that locality ensures that parts of
the tree can be swapped, as long the swapping preserves the
local neighborhoods. In the theorem below, we say that two
forests agree up to depth n if they are equal once nodes of
depth greater than n are removed. A similar definition is
used for contexts.

Theorem 19

A regular tree language can be defined in first-order logic
with the child predicate if and only if there is some n € N
such that the following identities hold.

pY o~ pt! (15)
stt~tts (16)
ps+qt ~ pt+gs 17)
P1q1P2g2 ~ P2G1P1g2 (18)

In (17), the pair of forests s,t must agree up to depth n.
Likewise in (18), for the contexts pairs p1,p2 and q1,q2.

The identities (17) and (18), which account for the swap-
ping, are illustrated below.

1

swap

DP1q1P2q2 ~ P2q1P1ge ps+qt ~ pt+gs

/O\ /\ large common prefixes

We try to justify identity (18), which is on the right in
the above illustration. We only focus on its correctness,
i.e. proving that a tree language L definable in first-order
logic with the child predicate must satisfy (18). As men-

tioned above, the language must be locally threshold testable.

Let now n € N be the size of the largest local property ¢
in the locally threshold testable expression defining L. As-
sume also that the common prefix of the forests s and ¢,
depicted as the grey part in the illustration, has depth at
least n. If we swap the two forests s and ¢, then none of the
local properties will be affected, so swapping does not affect
membership in L.

An open problem is finding an effective characterization
for first-order logic with both the child and next-sibling pred-
icates.

Low levels of the quantifier alternation hierarchy.

So far we have considered logics that were obtained by
either limiting the type of predicates available, or the type of
sets available in second-order quantification. In this section
we will limit the patterns of quantification.

In the quantifier alternation hierarchy, each level counts
the alterations between V and 3 quantifiers in a first-order
formula in prenex normal form (i.e. when all quantifiers are
pulled to the beginning of the formula). Formulas with n—1
alternations are called X, if they begin with 3, and II,, if
they begin with V. For instance, the property “at least two
nodes” can be defined by a ¥; formula Jx3y.x # y, while the
property “root has label a” can be defined by the 32 formula
JzVy. a(z) A (y >). Note that consecutive quantifiers of
the same type do not contribute to the complexity, like the
two existential quantifiers z3y in the first example.

The quantifier alternation hierarchy can be considered for
signatures with different predicates, but we focus here on
just the descendant (for trees), or the left-to-right order (for
words). Note that although the child (respectively, suc-
cessor) relation can be defined in terms of the descendant
(respectively, order), the definition requires a V quantifier,
which may affect the position in the hierarchy.

The quantifier alternation hierarchy has been intensively
studied for word languages. There is a corresponding hierar-
chy of star-free regular expressions on words, which matches
the quantifier alternation hierarchy level by level [28]. There
are effective characterizations for levels leading up to 32
and Ilz, including two intermediate levels: finite boolean
combinations of X1, and the intersection Y2 N II2. Each of
these levels has several—sometimes surprising—alternative
descriptions. For instance, languages that belong to both
Yo and Il> are the same as those definable in two-variable
first-order logic with the order predicate, and also the same
as those recognized by two-way deterministic ordered au-
tomata. A more detailed study of the intersection Yo N 1l2
can be found in [27], while [21] offers a broader look on the
quantifier alternation hierarchy and other logics for words.

The quantifier alternation hierarchy has also been studied
for tree languages. Just like word languages, tree languages
also have a regular expression hierarchy that corresponds
level by level to the quantifier alternation hierarchy [3]. We
also have effective characterizations for some of the lower
levels, which are cited below.

In the discussion below, we focus on formulas where only
the descendant predicate is allowed, although results have
been presented for other sets of predicates, too.

We begin with level ¥;. Since this level is not closed un-
der boolean combinations, we cannot hope for identities, but
only for an implication. The characterization is straightfor-
ward: a tree language is definable in ¥; if and only if it
is commutative—since we only have the descendant—and
closed under adding new nodes.

Theorem 20

A regular tree language is definable by a formula of X1 with
descendant if and only if it is commutative and satisfies the
implication:

pse€ L=pgse L .

Proof

The “only if” part is obvious. For the “if” part, take a com-
mutative language L that satisfies the above implication.
Let S be the set of minimal (with respect to <) trees in
L. By upward closure under =, a tree belongs to L if and
only if it contains a piece from S. The latter property can
be expressed in X1, since S is commutative and finite (by a
pumping argument).]

Some node has label a and a child with label a

Exactly two nodes with label a

Some child of the root has label a

Figure 3: Low levels of the alternation hierarchy.

The characterization for II; is obtained by reversing the
implication above. Between levels 1 and 2 of the quanti-
fier alternation hierarchy we find the two intermediate men-
tioned previously.

It is easy to see that the finite boolean combinations of
Y1 sentences are the same as the piecewise testable tree lan-
guages, which were characterized in Theorem 5.

As mentioned above, for word languages the intersection
of X2 and Il2 is a remarkably robust class. The situation for
tree languages is less clear, since some of the descriptions
that are equivalent for words diverge over trees (e.g. two-
variable first-order logic is no longer the same as the inter-
section of ¥ and Ilz). However, we do have an effective
characterization.

Theorem 21 ([5])

A regular tree language is definable in both Yo and Iy with
descendant if and only if it is commutative and satisfies the
identity

forq=p (19)

We still do not have an effective characterization of lev-
els 3o or Ils. One conjecture is that the these classes are
captured by replacing the identity in (19) with a one-way im-
plication (left-to-right for X2 and right-to-left for II). An
effective characterization of any level above X5 or Il2 is a
widely open problem, even for word languages.

p° ~ p“qp”

6. AN UNDECIDABILITY RESULT

We conclude this paper with a negative result.

After seeing a long line of logics, each one with a different
set of identities, the reader may be tempted to ask: is there a
more general approach? Is there an algorithm, which inputs
a definition of a logic £ and a language L, and decides if the
language L can be defined in the logic £7 In this section,
we show that such a general algorithm does not exist, even
for a fairly weak way of describing logics.

We will show that a general algorithm is impossible al-
ready for fragments of XPath with the descendant axis. To
define the notion of a general algorithm, we need a way
of representing logics on the input of an algorithm. Be-
low, we will give an abstract definition of a “one-way oper-

ator”. The general idea is as follows: an operator, such as
descendant ¢, takes the set of nodes in a tree that satisfy
the formula ¢, and says if the root of the tree is selected
by the operator. If the operator takes two arguments, such
EpUy of CTL (which says “some node is selected by 1 and
has all ancestors selected by ¢”), then two sets of nodes—one
for ¢ and one for 1)—are needed to give the result. These
two sets can be given by labeling each tree node with a
bit-vector (ay,ay) € {0,1}%, with a,, indicating if ¢ holds,
and a indicating if ¢ holds. An n-ary one-way operator is
represented as a tree language over the alphabet {0,1}".

For instance, the language representing the unary one-
way operator childyp is “some child of the root has label
17, while the language representing to the binary one-way
operator EpU is “some node z has label (0,1) or (1,1),
and all ancestors of x have label (1,0) or (1,1)”.

We will only be interested in operators where the tree
languages are regular. There is also a definition of a two-
way operator, which can capture e.g. parenty, but we omit
it for lack of space.

We now proceed to define the temporal logic induced by a
set of one-way operators. Fix an alphabet A. Let Ly, ..., Lg
be tree languages over A and let ¢t be a tree over A . The
characteristic tree of t under L1, ..., L is obtained from ¢
by changing the label of each node x of ¢ to a bit vector in
{0,1}*, whose i-th bit indicates whether or not the subtree
of t rooted in x belongs to L;. With Li,..., Ly as above,
let L be a language representing a k-ary one-way operator.
The nesting of L1, ..., Lk inside the operator L is the tree
language over A that contains trees whose characteristic tree
under Li,..., Li belongs to L. Given a set L of representa-
tions of one-way operators, the temporal logic induced by L
is the smallest language class that contains all languages of
the form “the root has label a”, and is closed under boolean
combinations and nesting inside operators from L.

With this general definition, one could hope there is an
algorithm that inputs a set of representations of one-way
temporal operators and a target language L, and answers if
L can be defined using the given operators. Unfortunately,
such an algorithm does not exist, even if we only use opera-
tors that can be defined in XPath with only the descendant
axis:

Theorem 22 ([24])

The following problem is undecidable:

Input: Tree languages L, and L, ..., Ly, all definable in
XPath with only the descendant axis.

Question: Is L definable in the temporal logic induced by
Li,...,L,?

In the above problem there is even a choice of operators
Li,...,Ly, such that the problem stays undecidable with
only one input, L. In light of the above result, it seems that
we are resigned to giving a characterization for each logic on
a case-by-case basis.

Finally, while we are on the subject of composing one-way
operators, we mention that no finite set of one-way temporal
operators can capture all the path testable languages.

Theorem 23
No finite set of one-way operators induces a logic that defines
all the languages Ly, =“some path in (a™b)*”, for n € N.

One consequence of the above theorem is that first-order
logic, which can define all the languages L,,, cannot be in-
duced by a finite set of one-way operators. This is in contrast
with words, where the one-way operator U of LTL cap-
tures all of first-order logic. Note that Theorem 23 does not
say that first-order logic cannot be captured with a finite
number of operators, it only says that it cannot be cap-
tured by a finite number of one-way operators. As shown by
Marx [18], first-order logic is captured by adding extending
CoreXPath with a form of transitive closure.

7.
[1]

2]

3]
[4]
[5]

(6]

(7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

REFERENCES

Pablo Barcel6 and Leonid Libkin. Temporal logics
over unranked trees. In LICS, pages 31-40, 2005.
Michael Benedikt and Luc Segoufin. Regular tree
languages definable in FO. In STACS, pages 327-339,
2005. A corrected version can be found on
http://www-rocq.inria.fr/ segoufin/PAPIERS.
Mikolaj Bojanczyk. Forest expressions. In CSL, pages
146-160, 2007.

Mikotaj Bojanczyk. Two-way unary temporal logic
over trees. In LICS, pages 121-130, 2007.

Mikolaj Bojanczyk and Luc Segoufin. Tree languages
definable with one quantifier alternation. Submitted.
Mikolaj Bojanczyk, Luc Segoufin, and Howard
Straubing. Piecewise testable tree languages. LICS,
2008.

Mikolaj Bojanczyk and Igor Walukiewicz.
Characterizing EF and EX tree logics. Theor. Comput.
Sci., 358(2-3):255-272, 2006.

Mikolaj Bojanczyk and Igor Walukiewicz. Forest
algebras. In Automata and Logic: History and
Perspectives, pages 107 — 132. Amsterdam University
Press, 2007.

J. R. Biichi. Weak second-order arithmetic and finite
automata. Z. Math. Logik Grundl. Math., 6:66-92,
1960.

Bruno Courcelle. The monadic second-order logic of
graphs X: Linear orderings. Theor. Comput. Sci.,
160(1&2):87-143, 1996.

C. C. Elgot. Decision problems of finite automata
design and related arithmetics. Transactions of the
AMS, 98:21-52, 1961.

Zoltén Esik and Szabocs Ivan. Some varieties of finite
tree automata related to restricted temporal logics.
Fundamenta Informaticae, 82(1-2), 2008.

Haim Gaifman. On local and non-local properties. In
Proceedings of the Herbrand Symposium, Logic
Colloquium 81, 1982.

Georg Gottlob and Christoph Koch. Monadic queries
over tree-structured data. In LICS, pages 189-202,
2002.

Thilo Hafer and Wolfgang Thomas. Computation tree
logic CTL* and path quantifiers in the monadic theory
of the binary tree. In ICALP, pages 269-279, 1987.

(16]

(17]

J. A. Kamp. Tense Logic and the Theory of Linear
Order. PhD thesis, Univ. of California, Los Angeles,
1968.

Leonid Libkin. Logics for unranked trees: An
overview. Logical Methods in Computer Science, 2(3),
2006.

Maarten Marx. Conditional XPath. ACM Trans.
Database Syst., 30(4):929-959, 2005.

Robert McNaughton and Seymour A. Papert.
Counter-Free Automata (M.1.T. research monograph
no. 65). The MIT Press, 1971.

Jean-Eric Pin. Logic, semigroups and automata on
words. Ann. Math. Artif. Intell., 16:343-384, 1996.
Jean-Eric Pin. Logic on words. In Current Trends in
Theoretical Computer Science, pages 254-273. 2001.
Andreas Potthoff. First-order logic on finite trees. In
TAPSOFT, pages 125—139, 1995.

Andreas Potthoff and Wolfgang Thomas. Regular tree
languages without unary symbols are star-free. In
FCT, pages 396—405, 1993.

Mefodie Rata. A formal reduction of the general
problem of expressibility of formulas in the Goédel-Lob
provability logic. Discrete Mathematics and
Applications, 12(3):279-290, 2002.

Marcel Paul Schiitzenberger. On finite monoids having
only trivial subgroups. Information and Control,
8(2):190-194, 1965.

Imre Simon. Piecewise testable events. In Automata
Theory and Formal Languages, pages 214-222, 1975.
P. Tesson and D. Thérien. Diamonds are forever: the
variety DA. In Semigroups, Algorithms, Automata and
Languages, pages 475-500, 2002.

Wolfgang Thomas. Classifying regular events in
symbolic logic. J. Comput. Syst. Sci., 25(3):360-376,
1982.

Wolfgang Thomas. Logical aspects in the study of tree
languages. In CAAP, pages 31-50, 1984.

Wolfgang Thomas. Languages, automata, and logic. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Language Theory, volume III, pages 389-455.
Springer, 1997.

B. A. Trakthenbrot. Finite automata and the logic of
monadic second order predicates(russian). Doklady
Academii Nauk SSSR, 140:326-329, 1961.

Thomas Wilke. An algebraic characterization of
frontier testable tree languages. Theor. Comput. Sci.,
154(1):85-106, 1996.

Thomas Wilke. Classifying discrete temporal
properties. In STACS, pages 3246, 1999.

Zhilin Wu. A note on the characterization of TL[EF].
Inf. Process. Lett., 102(2-3):48-54, 2007.

