
Shuffle expressions and words with nested data

Henrik Björklund1 Miko laj Bojańczyk2

1 University of Dortmund
2 Warsaw University

Abstract. In this paper, we develop a theory that connects: a) words
with nested data values and b) shuffle expressions. We study two cases,
which we call “ordered” and “unordered”. In the unordered case, we
show that emptiness (of the two related problems) is decidable. In the
ordered case, we prove undecidability. As a proof vehicle for the latter,
we introduce the notion of higher-order multicounter automata.

1 Introduction

A data word is a word where each position, in addition to its finite alphabet label,
carries a data value from an infinite domain. Recent times have seen a flurry of
research on data languages, motivated chiefly by applications in XML databases
and parameterized verification; see, e.g., [7, 8, 3, 5, 10, 4, 1]. One of the main re-
sults is that satisfiability for first-order logic with two variables is decidable over
data words, as long as the only operation allowed on the data values is equality
testing [3]. The same paper also demonstrates a close connection between data
languages, shuffle expressions, and multicounter automata:

1. Multicounter automata. These are automata with many counters, which can
be incremented and decremented, but zero tests are only allowed at the end
of the word.

2. Shuffle expressions. These are regular expressions extended with intersection
and the shuffle operation.

3. Two-variable data languages. These are properties of data words that can
be expressed in certain two-variable logics.

The connection between multicounter automata (or Petri nets) and shuffle ex-
pressions was discovered in [6], while the connection between the first two and
data languages was discovered in [3].

In this paper, we develop and investigate extensions of the above frameworks.
Our focus is on nested data values and nested shuffle expressions. There are two
principal motivations.

– When data values are only used to induce an equivalence relation on the
positions, such as in the logics mentioned above, one of the chief applications
is parameterized verification. A number of processes run in parallel, and in
the resulting sequence of actions, the individual actions are annotated by
the unique id of the process that performed them. This data word can be
used to check global properties (by looking at the whole string) and local
properties (by considering the sequence of actions of a single process).

To model a system where processes can have subprocesses, and so on, we
would want a data word with nested data values: each action carries the id
of the subprocess which performed it as well as the id of the process that
spawned the subprocess, and so on.

– In [6], nesting of the shuffle operation was not considered. This runs con-
trary to the unrestricted nesting of other operations in regular expressions,
and begs the question what happens when unrestricted nesting of shuffles
is allowed. We discover that the resulting languages are actually intimately
related to languages with nested data. We also discover that this leads to
undecidability; and decidability can be recovered only after adding a form
of commutativity to the shuffle operation.

The main focus of the paper is logics over words with nested data. We study two
two-variable fragments of first order, one with order and one without. The first
one is shown to be undecidable, while the second is decidable. Nested shuffle
expressions are the main proof vehicle employed, as well as an object of inde-
pendent study. For instance, the expressions we consider capture the language:

an1# · · ·#ank#bm1# · · ·#bmk# : n1, . . . , nk is a permutation of m1, . . . ,mk

It is our opinion that the two concepts—logic with nested data and shuffle
expressions—shed light on each other in a useful cross-fertilization.

2 A Logic for Words with Nested Data

Let A be a finite alphabet and ∆ an infinite set, whose elements will be called
data values. For k ∈ N, a word with k layers of data is a word where every
position, apart from a label in A, has k labels d1, . . . , dk ∈ ∆. The label di is
called the i-th data value of the position. Therefore, such a word is an element
w ∈ (A × ∆k)∗. In w, the data values can be seen as inducing k equivalence
relations ∼1, . . . ,∼k on the positions of w. That is, two positions are related by
∼i if they agree on the i-th data value.

We are interested in the data values only insofar as equality is concerned.
Therefore, the relations ∼1, . . . ,∼k supply all the information required about a
word; and could be used as an alternative definition. Adding more structure—
such as a linear order—to the data values leads very quickly to undecidable
decision problems, already with one layer, and even for very weak formalisms.

A word with k layers of data is said to have nested data if for each i = 2, . . . , k
the relation ∼i is a refinement of ∼i−1. In other words, if two positions agree on
value i, then they also agree on value i− 1. For the rest of this section, we fix k
and only talk about words and languages with k layers of nested data. Instead of
”word with k nested layers of data”, we will just write ”word with nested data”.

In the spirit of Büchi’s sequential calculus, we will use logic to express proper-
ties of words with nested data. In this setting, a word with nested data is treated
as a model for logic, with the logical quantifiers ranging over word positions. The
data values are accessed via the relations ∼i. For instance, the formula

∀x∀y (x ∼2 y ⇒ x ∼1 y) ∧ · · · ∧ (x ∼k y ⇒ x ∼k−1 y)

2

states that the data values are nested. (This formula is a tautology in our setting,
where only models representing words with nested data values are considered.)
Each label a from the finite label set A can be accessed by a unary relation; for
instance ∀x a(x) is true in words where all positions have label a. The linear
order on word positions can be accessed via the relation <. For instance,

∀x (∀y y ≤ x) ⇒ (∀y < x y 6∼1 x)

says that the last position has a different first (and consequently, all others as
well) data value than than the other positions. We will also use the successor
relation x = y + 1. Although the successor can be defined in terms of the order,
a third variable z is required, which is too much for the two-variable fragments
considered later on.

We will mainly look at the satisfiability problem: given a first-order formula,
determine if there is a nested data word that satisfies it. This problem is un-
decidable in general, but by restricting the type of formulas, we can arrive at
decidable fragments. There are two aspects of formulas that can be tweaked: the
number of variables, and the signature.

Satisfiability is undecidable already for the following fragments, see [3]:

– There is only one layer of data. The formulas can use three variables; but
the order on word positions can be accessed only via x = y + 1 and not <.

– There are two layers of data, but these are not necessarily nested. The for-
mulas can use only two variables, x = y + 1, x = y + 2 and not <.

Therefore, if we want decidability, we can have at most two variables, and the
data values must be nested, if there is more than one layer. The largest known
decidable fragment was presented in [3]:

– There is only one layer of data. The formulas can use only two variables,
and the positions can be accessed by both x = y + 1 and <.

We want to generalize the above result to words with multiple layers of nested
data. The result from [3] fails already for two layers:

Theorem 21
With two layers of nested data, satisfiability is undecidable for two-variable first-
order logic with the relations x = y + 1 and x < y.

The proof can be found in Appendix A.1.
Even with the above result, however, not all hope is lost. Satisfiability is

decidable if we lose the order <, even with arbitrarily many layers of data. This
is the principal result of this paper.

Theorem 22
Over words with nested data, satisfiability is decidable for two-variable first-order
logic with the relation x = y + 1.

Definition 1 gives a formal description of the logic used in the above theorem:

3

Definition 1. FO2(+1,∼1, . . . ,∼k) is the fragment of first-order logic that uses
only the two variables x and y and the following predicates.

a(x) x has label a, where a is a label from A
y = x+ 1 y is the position directly to the right of x
x ∼i y x and y have the same layer i data value, with i ∈ {1, . . . , k}

In Appendix A.2, we show that every formula in the logic of Theorem 22 can be
expressed in a certain normal form. This normal form can then be rewritten into
a certain type of shuffle expression, as defined in Section 3. Finally, Theorem 52
shows decidability of the emptiness problem for the shuffle expressions, and
Theorem 22 follows.

3 Shuffle expressions

Recall that a word w ∈ A∗ is called a shuffle of words w1, · · · , wm ∈ A∗ if the
positions of w can be colored using m colors so that the positions with color
i ∈ {1, . . . ,m}, when read from left to right, form the word wi. If K ⊆ A∗ is a
(possibly infinite) set of words, then shuffle(K) ⊆ A∗ is defined as

{w : w is a shuffle of some w1, . . . , wm ∈ K, for some m ∈ N} .

Note that the words w1, . . . , wm above may include repetitions. For instance,
shuffle({a}) contains all words a∗. Just as finite automata are connected to
regular expressions, multicounter automata are connected to shuffle expressions.
This is witnessed by the following result, essentially due to [6]:

Theorem 31
The following language classes are equal, modulo morphisms:

1. Languages recognized by multicounter automata;
2. Languages of the form L ∩ shuffle(K), where L,K are regular.

The qualification “modulo morphisms” means that any language from class
1 is a morphic image of a language in class 2. (Class 2 is simply contained in
class 1, without need for morphisms.) The point of the morphism is to erase
bookkeeping, such as annotations with accepting runs.

The above considerations naturally suggest the following question: what lan-
guages do we get, if we add the following operations to regular expressions:
intersection and shuffle? Stated differently, what happens if we allow arbitrary
nesting of the shuffle operation, interleaved with intersections, concatenations
and stars? We get too much:

Theorem 32
If regular expressions are extended with shuffle and intersection, all recursively
enumerable languages can be defined modulo morphisms.

In particular, emptiness is undecidable for such extended regular expressions.
Disallowing intersection trivializes the emptiness problem — which is the prob-
lem we are most interested in here — since shuffle(K) is nonempty if and only if

4

K is. Theorem 32 follows directly from Theorems 41 and 42, which are presented
in Section 4.

In this paper, however, we are most interested in decidability results, espe-
cially for logics with data values. It turns out that decidability can be recovered,
if we consider a weaker form of shuffling, which is partly commutative.

3.1 Cutting and combining

To express our modification of the shuffle operation, it is most convenient to
decompose shuffle(L) into two operations:

shuffle(L) = combine(cut(L)) . (1)

The first cut operation sends a set of words L ⊆ A∗ to the set of traces obtained
by cutting a word from L into pieces:

cut(L) = {w1| · · · |wk : w1 · · ·wk ∈ L} ⊆ (A∗)∗ .

In the above a trace is a sequence of finite words, which is written as w1| · · · |wk,
with | separating consecutive words, called segments. Traces are denoted by
θ or σ, and will be heavily used later on.

The second operation is called combine, and it sends a set of traces L ⊆ (A∗)∗
to the set of words that can be combined from these traces:

combine(L) = {w : w is a combination of θ1, . . . , θm ∈ L } ⊆ A∗ .

By saying that w is a combination of traces θ1, . . . , θm we mean that positions
of w can be colored with m colors, so that for each color i = 1, . . . ,m, the
positions with color i give the trace θi. In the trace θi = w1| · · · |wn, the segments
w1, . . . , wn correspond to maximal subwords of w that are assigned color i, see
the example in Figure 1.

a b c c c b a c
1 1 2 1 3 1 2 2

θ1 = ab|c|b
θ2 = c|ac
θ3 = c

Fig. 1. A coloring, which demonstrates that abcccbac is a combination of traces ab|c|b,
c|ac and c. By the maximality requirement, the trace θ2 cannot be replaced by c|a|c.

Given the above definitions of cut and combine, it should be fairly clear that
equation (1) holds. However, by tweaking the definitions of cut and combine,
we will arrive at variants of the shuffle operation that are decidable and, more
importantly, relevant to our investigation of nested data values.

The first modification gives us more control on the way words from L ⊆ A∗

are cut into traces. Let K ⊆ A∗ be a language. We define

cutK(L) = {w1| · · · |wk : w1 · · ·wk ∈ L,w1, . . . , wk ∈ K} ⊆ (A∗)∗ .

5

In other words, words from L are cut into traces where each segment belongs
to K. Setting K = A∗ allows us to recover the standard cut operation, so cutK

is a generalization of cut . In this paper, we only consider the case when K is
regular.

The second modification concerns the operation combine. In the definition
above, traces are ordered sequences of words. An unordered trace, on the other
hand, is a multiset of words, i.e. a trace where the order of segments is not
important (however, the ordering of letters inside the segments is). The operation
ucombine(L) treats the set of traces L as unordered traces:

ucombine(L) = {w : w is an unordered combination of θ1, . . . , θm ∈ L } ⊆ A∗ .

In the above, w is called an unordered combination of θ1, . . . , θm if w is a com-
bination of traces σ1, . . . , σm, such that σi is obtained from θi by rearranging
the order of segments. For instance abc is an unordered combination of traces
θ1 = c|a and θ2 = b.

3.2 Four kinds of shuffle expressions

Depending on which of the two modifications described in the previous section
are used, we obtain four variants of the shuffle operation:

– Shuffle: shuffle(L) = combine(cut(L)).
– Controlled shuffle: cshuffleK(L) = combine(cutK(L)).
– Unordered shuffle: ushuffle(L) = ucombine(cut(L)).
– Unordered controlled shuffle: ucshuffleK(L) = ucombine(cutK(L)).

Each such operation gives rise to its own flavor of extended regular expres-
sions. We will investigate and compare these flavors with respect to decidability
and expressive power.

Definition 33 Controlled shuffle expressions (CSE) denote languages obtained
by nesting the following operations:

– Standard regular expression operations: single letters a ∈ A, the empty word
ε, concatenation, union and Kleene star.

– Intersection with regular languages.
– Controlled shuffle cshuffleK(L), where L is defined by a CSE, but K is a

regular word language.
– Images under morphisms f : A∗ → B∗.

Shuffle expressions (SE), unordered shuffle expressions (USE) and unordered
controlled shuffle expressions (UCSE) are defined analogously, by replacing the
type of shuffle operation allowed.

Note that all types of operations can be nested with each other. For instance,
we can have a Kleene star of a controlled shuffle.

The point of adding morphic images is to have a form of nondeterministic
guessing in the expressions (and therefore more power). This will be illustrated
in the following example. Note also that morphic images are necessary due to
adding the intersection and shuffle operations; in standard regular expressions
the projection operation does not add any power and can be eliminated.

6

Example 1. In the shuffle operation shuffle(L), we have no control over the num-
ber of times the language L is used. In this example we show that we can enforce
that it is used an even number of times. Let then L ⊆ A∗ be defined by an SE.
The idea is to expand the alphabet A with a new symbol start; each word from
L will be prefixed by this symbol. Consider then the expression:

K = start · L .

If we now take the expression shuffle(K), we can use the marker start to see how
many times K was used. By intersecting with the regular language “even number
of occurrences of start”, we can make sure that it was used an even number of
times. Finally, the markers can be removed using the erasing morphism f :
(A ∪ {start})∗ → A∗ defined by f(start) = ε and f(a) = a for a ∈ A.

Example 2. Unordered shuffling is enough to express some counting properties:
The expression ushuffle(ab) describes words in (a + b)∗ with the same number
of a’s and b’s. Using intersection with the regular language a∗b∗, we get the
language {anbn}.

The following example shows a language defined by unordered controlled
shuffle expressions that cannot be defined by unordered shuffle expressions (the
proof is postponed).

Example 3. Using the same idea as in the previous example, we can also get the
language L = {an#bn}. Consider now the following expression:

(a∗#)∗(b∗#)∗ ∩ ucshuffleK(L) where K = a∗# + b∗

This expression defines the set M of words

an1# · · ·#ank#bm1# · · ·#bmk#

where n1, . . . , nk is a permutation of m1, . . . ,mk.

3.3 From logic to shuffle expressions

In this section we state the reduction of satisfiability for FO2(+1,∼1, . . . ,∼k) to
the emptiness problem for unordered controlled shuffle expressions. The latter
will be shown to be decidable in Section 5.

Theorem 34
For every FO2(+1,∼1, . . . ,∼k)-formula φ, a UCSE r can be effectively computed
such that the language of r is non-empty if and only if φ is satisfiable.

The corresondence between r and φ is actually stronger: r contains words ob-
tained from models of φ by erasing data values. The proof can be found in
Appendix A.3. We do not know if the converse translation—from expressions to
logic—can be done; possibly the expressions are strictly stronger than the logic.
A similar reduction, from logic with order to CSE is possible, but the proof is
omitted.

7

4 Ordered shuffle expressions

The following theorem relates CSE, SE and higher-order multicounter automata.
The latter, to our best knowledge, are a new model.

Theorem 41
The following language classes are equal:

1. Languages defined by cut shuffle expressions (CSE);
2. Languages defined by shuffle expressions (SE);
3. Languages defined by higher-order multicounter automata;
4. Recursively enumerable languages.

We define higher-order multicounter automata in Section 4.1, and prove their
Turing completeness. The rest of Theorem 41 is shown in Appendix B.1.

4.1 Higher-order multicounter automata

A multiset over A is a function m : A → N. We only consider finite multisets
here, where all but a finite number of elements in A are assigned 0. We also
consider higher-level multisets (which are also multisets). A level 1 multiset over
A is a finite multiset over A. A level k+ 1 multiset over A is a finite multiset of
level k multisets over A.

A level k multicounter automaton is defined as follows. It has a state space
Q, an input alphabet Σ, and a multiset alphabet A. All of these are finite. The
automaton reads an input word w ∈ Σ∗ from left to right. At each moment,
its memory is a tuple (q,m1,m2, . . . ,mk), where q is one of the states in Q,
and each mi is a level i multiset over A, possibly undefined ⊥. (We distinguish
an empty multiset ∅ from an undefined one ⊥.) The initial configuration is
(qI ,⊥,⊥, . . . ,⊥), where qI is some designated initial state.

There is a finite set of transition rules, which say how the machine can modify
its memory upon reading an input symbol (or doing an ε-transition). Each such
transition rule is of the form: when in state q and upon reading the label a ∈
Σ∪{ε}, assume state p and do counter operation x. The counter operations are:

new i Change mi from ⊥ to ∅.
inca Add a ∈ A to the level 1 multiset m1.
deca Remove a ∈ A from the level 1 multiset m1.

storei Add mi to the level i+ 1 multiset mi+1; then set mi to ⊥.
load i Remove nondeterministically some element m from mi+1 and store it in mi.

This transition is enabled only when m1, . . . ,mi are all ⊥.

We use Counteropsk to denote the possible counter operations in a level k au-
tomaton. Note here that the automaton knows which mi are undefined, since this
is controlled by transitions new i and storei. On the other hand, the automaton
does not know if a defined multiset mi is empty, or not.

What is the accepting condition? We say a level k multiset is hereditarily
empty if it is empty, or it consists only of hereditarily empty level k−1 multisets.
The automaton accepts if m1, . . . ,mk are all hereditarily empty multisets in all
memory cells; and the control state belongs to a designated accepting set.

Here we show that the machines are Turing complete, already on level 2.

8

Theorem 42
Level 2 multicounter automata recognize all recursively enumerable languages.

Proof
We show that a level 2 multicounter automaton can simulate a two-counter
machine with zero tests. Since the latter type of machine is capable of recognizing
all recursively enumerable languages, the statement follows.

A configuration of the two-counter machine, where counter 1 has value i and
counter 2 has value j, will be represented by the following level 2 multiset:

{{x, . . . , x︸ ︷︷ ︸
i times

, a}, {x, . . . , x︸ ︷︷ ︸
j times

, b}, ∅, . . . , ∅︸ ︷︷ ︸
k times

} . (2)

The occurrences ∅ are used for bookkeeping; the number k will correspond to the
number of zero-tests that have been carried out in the run leading to this config-
uration. A configuration as above is called proper. Our automaton will have the
property that improper configurations always lead to improper configurations;
furthermore, a failed zero-test will lead to an improper configuration.

We now show how to represent the operations of the simulated machine:

– Zero test on counter 1. We do the following sequence of operations:

load1 deca store1 new1 inca store1 .

If the configuration was improper, it will remain so. If it was proper, the
level 2 from (2) multiset will become:

{{a}, {x, . . . , x︸ ︷︷ ︸
j times

, b}, ∅, . . . , ∅︸ ︷︷ ︸
k times

, {x, . . . , x︸ ︷︷ ︸
i times

}} .

If i was not 0, the above configuration will be improper.
– Increment on counter 1. We do the following sequence of operations:

load1 deca incx inca store1 .

A decrement is done the same way.
– The operations on counter 2 are as above, except b is used instead of a.

One can easily see that the automaton can reach a proper configuration as in (2)
if and only if the simulated two-counter machine could have counter values (i, j).
Furthermore, the simulating machine can test (once, at the end of its run), if it
has reached a proper configuration of the form:

{{a}, {b}, ∅, . . . , ∅︸ ︷︷ ︸
k times

} .

This is done by load1 deca store1 load1 decb store1 and testing if all
memory cells are hereditarily empty. �

9

5 Unordered shuffle expressions

In this section, we state the decidability of the emptiness problems for un-
ordered shuffle expressions, controlled (UCSE) or not (USE). Since ushuffle(L) =
ucshuffleA∗(L) if A is the alphabet of L, it is clear that USE is a special case of
UCSE. Nevertheless, we chose to state the following independently:

Theorem 51
Emptiness for unordered shuffle expressions is decidable.

The reason is that the proof, given in Appendix C.1, is considerably less involved
than for the controlled case. It uses a reduction to finite word automata equipped
with a Presburger counting condition.

As stated in the introduction, the main goal of this paper is to show de-
cidability of satisfiability for the 2-variable logic from Definition 1 over words
with nested data. Theorem 34 shows that this problem reduces to emptiness for
UCSE. We are now ready to complete the proof of Theorem 22, by stating the
main combinatorial result of the paper:

Theorem 52
Emptiness for unordered controlled shuffle expressions is decidable.

The proof, given in Appendix D.1 is rather involved, and is based on a study of
the Parikh images [9] of languages defined by UCSE.

We conclude by summarizing the expressive power of the expressions:

USE (UCSE (SE = CSE .

The first inequality is shown in the appendix. The second inequality follows by
undecidability of SE, while the equality was mentioned in Theorem 41.

References

1. H. Björklund and T. Schwentick. On notions of regularity for
data languages. Manuscript, 2006, available at http://lrb.cs.uni-
dortmund.de/∼bjork/papers/regular-data.pdf.

2. M. Bojańczyk, A Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable
logic on data trees and xml reasoning. In PODS’06, pages 10–19, 2006.

3. M. Bojańczyk, A Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable
logic on words with data. In LICS’06, pages 7–16, 2006.

4. P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and
timed languages. Information and Computation, 182(2):137–162, 2003.

5. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. In
LICS’06, pages 17–26, 2006.

6. J. Gischer. Shuffle languages, petri nets, and context-sensitive grammars. Com-
munications of the ACM, 24(9):597–605, 1981.

7. M Kaminski and N. Francez. Finite-memory automata. TCS, 132(2):329–363,
1994.

8. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM transactions on computational logic, 15(3):403–435, 2004.

9. R. Parikh. On context-free languages. Journal of the ACM, pages 570–581, 1966.
10. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In

Computer Science Logic (CSL), volume 4207 of LNCS, pages 41–57, 2006.

10

A Logic appendix

A.1 Proof of Theorem 21

We encode computations of a two-counter machine with zero tests. Before pre-
senting the full construction, we begin with an important component. Consider
words with two layers of nested data, where the labels are

A = {start, end, inc, dec}

and the positions are labeled according to the regular language:

(start(inc+ dec)∗end)∗ .

This is equivalent to the conjunction of the following two-variable formulas:

∀x(∀y y 6= x+ 1) ⇒ end(x) ∀y(∀x y 6= x+ 1) ⇒ start(x)
∀x∀y y = x+ 1 ⇒ (start(x) ⇐⇒ end(y)) . (3)

We now say that each block of the form start(inc + dec)∗end corresponds to a
single data value on layer 1:

∀x start(x) ⇒ ∀y < x x 6∼1 y ∀x end(x) ⇒ ∀y > x x 6∼1 y
∀x∃y ≥ x x ∼1 y ∧ end(y) ∀x∃y ≤ x x ∼1 y ∧ start(y) (4)

Finally, the following formula uses equivalence classes (sets of positions with the
same data value) on layer two to ensure that the operations inc and dec are
balanced by each other:

∀x∀y (x ∼2 y ∧ inc(x) ∧ dec(y)) ⇒ x < y
∀x∀y (x ∼2 y ∧ inc(x) ∧ inc(y)) ⇒ x = y
∀x∀y (x ∼2 y ∧ dec(x) ∧ dec(y)) ⇒ x = y

(5)

Consider a word with nested data that satisfies the above properties (3), (4)
and (5). This word can be seen as a computation of a one counter machine
without states, where inc corresponds to a counter increment, dec corresponds
to a counter decrement, while start, end correspond to zero tests.

The above construction contains the basic idea for encoding the two counter
machine. To get two counters instead of one, we expand the label alphabet from
A to {1, 2} × A, with 1 corresponding to the first counter, and 2 corresponding
to the second counter. The formula (3) is adapted to describe the language

start1start2(inc1 + inc2 + dec1 + dec2 + end1start1 + end2start2)∗end2end1

while the formulas (4) and (5) are written twice, with one copy for each counter.
The formulas corresponding to the bottom row of (4) have to say that if x is
a counter 1 operation, then it should be followed (preceeded) by a counter 1
end label (start label) in the same ∼1 class. Finally, states Q of the two-counter
machine are encoded by further expanding the alphabet to

Q× {1, 2} ×A .

A two-variable formula with y = x + 1 can verify that states in neighboring
positions are consistent with the transition relation of the two-counter machine.

11

A.2 Proof of Theorem 22

Our proof strategy for Theorem 22 is to first transform a logical formula into a
normal form very similar to the one used in [3]—see Definition 2—and then to
decide emptiness for formulas in the normal form. The normal form is described
in terms of formulas with existential second-order monadic prefixes, which are
described below.

Since the signature contains unary predicates a(x) for labels from A, and
since the decision problem concerned is satisfiability, we can consider with-
out loss of generality formulas from a slightly more expressive logic, which
we call EMSO2(+1,∼1, . . . ,∼k). These are obtained by prefixing a formula of
FO2(+1,∼1, . . . ,∼k) with an existential second-order monadic prefix, i.e. for-
mulas of the form

ψ = ∃R1 . . .∃Rmϕ

where ϕ is a formula from FO2(+1,∼1, . . . ,∼k) and R1, . . . , Rn are unary pred-
icate symbols. The formula ϕ is called the (first-order) core. Apart from the
signature, ϕ can also use the unary predicates R1, . . . , Rm. It is easy to see that
ψ is satisfiable if and only if its core is, so satisfiability is no more difficult after
adding the second-order existential quantifiers.

Before presenting the normal form, we define two concepts used therein: type
and profile. A type is a conjunction of unary predicates or their negations, all
with the same variable. A type is called complete if it contains every predicate in
the signature, as well as all the predicates R1, . . . , Rn quantified in the second-
order prefix. For instance, a(x) ∧ ¬R1(x) is a type, but it is not complete if
the second-order prefix is ∃R1∃R2. The profile of a position j of a word is the
information, for each i = 1, . . . , k, about whether the predecessor and successor
of j have the same level i data value as j. There are (k + 1)2 possible profiles:
for the predecessor (and similarly for the successor) we need to say what is the
largest layer i = 0, . . . , k on which the two positions agree, 0 meaning there is
no predecessor.

Definition 2. An EMSO2(+1,∼1, . . . ,∼k)-formula is in data normal form if
its core is a conjunct of formulas of one of the following forms.

1. Data blind property (i.e. a formula not referring to ∼1, . . . ,∼k).
2. “Each ∼i class contains at most one node of type α.”
3. ”Each ∼i class with at least one node of type α has no node of type β.”
4. “Each ∼i-class with at least one node of type α also has a node of type β.”
5. “Each node of type α has profile p.”

(Actually, conjuncts of the 3rd kind are redundant, but keep them to clarify
our presentation.) The following proposition shows that the above is indeed a
normal form.

Proposition A1 Every formula of EMSO2(+1,∼1, . . . ,∼k) can be effectively
transformed into data normal form.

In the following example, we illustrate one of the techniques used in the proof
of Proposition A1:

12

Example 4. Consider the following property: “each ∼1 class contains at most
three nodes with label a.” The appropriate formula in data normal form is
∃R1∃R2∃R3ϕ, where ϕ says that: each node with label a satisfies exactly one of
R1, R2, R3 (a data blind formula); and each ∼1 class contains at most one node
with R1, R2 and R3 respectively (three formulas of kind 2).

Theorem 22 will follow if show that satisfiability can be decided for formulas
in data normal form. We will show this by compiling the formulas into a kind
of shuffle expressions. This mirrors the approach in [3]. There are two key dif-
ferences, however. First the shuffle expressions need to be nested—to account
for multiple layers of data values—and second, the shuffle operation needs to be
restricted—to account for the lack of order ≤. The appropriate definitions are
presented in the Section 3.

In a first step, we rewrite a formula into an intermediate normal form.
Below, we will write x 'i y for x ∼i y ∧ x 6∼i+1 y. For i = 1, we let x 'i y

mean x 6∼1 y. Also, for i = k, x 'i y means x ∼k y.

Definition 3. An EMSO2(+1,∼1, . . . ,∼k)-formula is in intermediate normal
form if its core is a conjunction of formulas of one of the following forms.

1 ∀x∀y[α(x) ∧ β(y) ∧ x 'i y] → d≤1(x, y) (In words: if x, y have types α and
β, respectively, and x 'i y, then they must be the same or neighbors.)

2 ∀x∃y α(x) → [β(y)∧ x 'i y ∧ ε(x, y)] (In words: if x is of type α, then there
is a y of type β such that x 'i y and y is the successor of x (alternatively:
predecessor of x / same as x / at least two positions away from x).)

where

– α, β are types;
– d≤1(x, y) is the disjunction x = y + 1 ∨ y = x+ 1 ∨ x = y;
– ε(x, y) is one of x = y + 1, y = x+ 1, x = y, or ¬d≤1(x, y).

Using a more or less straightforward adaptation of the proof from [3], one
can show that each FO2(+1,∼1, . . . ,∼k)-formula can be transformed into an
EMSO2(+1,∼1, . . . ,∼k)-formula in intermediate normal form.

It remains to show that formulas of types 1 and 2, where 1 ≤ i ≤ k − 1 can
be expressed in data normal form. (For conjuncts in which the i in x 'i y is
either 0 or k, the proof that they can be expressed in data normal form is the
same as in [3].)

We begin by showing that a number of useful counting predicates can be
defined in data normal form. Below we show that, using a formula in data normal
form, we can verify that a predicate αi

≥j—which can be guessed in the existential
second-order prefix—is true for exactly one node in each ∼i-class that contains
at least j nodes of type α, with pairwise different data values on layer i + 1.
(When i is clear from the context we will sometimes omit it.)

To define αi
≥1 we can use one formula of type (2) and one of type (4). Once

αi
≥j is defined, we can define αi

≥j+1 in the following way.

1. First, we introduce two new predicate βj , and γj . With a formula of type
(3) we say that each ∼i+1-class that has a node of type αi

≥j , has no node of
type ¬βj .

13

2. With a formula of type (4) we say that each ∼i+1-class with a βj also has
an αi

≥j .
3. With a formula of type (4), we say that each ∼i+1-class that has a node of

type α ∧
∧j

l=1 ¬βl has a node of type γj .
4. With a formula of type (4), we say that each ∼i-class with a node of type
γj has a node of type αi

≥j+1.
5. With j formulas of type (3), we say that no ∼i+1-class with an αi

≥l, for
1 ≤ l ≤ j, has a node of type αi

≥j+1.

We also define predicates αi
=j , true for exactly one node in each ∼i-class that

contains exactly j ∼i+1-classes that contain an α. It is defined by saying that
each ∼i-class with an αi

=j has exactly one node of type αi
≥j (type (4)), and that

each ∼i-class that has an αi
=j has no node of type αi

≥j+1.
Naturally, we can define similar predicates for types β, γ, etc.
We now deal with formulas of type 1:

∀x∀y[α(x) ∧ β(y) ∧ x 'i y] → d≤1(x, y)

Since x and y belong to different ∼i+1-classes (1 ≤ i ≤ k), d≤1 can be
replaced with x = y + 1 ∨ y = x+ 1, or in other words, x and y are neighbors.

A consequence of the above formula is that no ∼i-class can contain more
than two ∼i+1-classes that contain a node of type α and more than two ∼i+1-
classes that contain a node of type β. This is expressible in the following way.
We mark all positions in ∼i-classes that contain a position of type αi

≥3 with
predicate R1 and those in classes that contain a βi

≥3 with R2. The correctness
of these markings can be expressed by formulas of type (2). We then say, using
a formula of type (3) that no class that contains R1 also contains R2.

If a class has exactly 2 subclasses with an α (it has at least one node with
αi

=2), we mark all nodes in these subclasses with predicates R3 and R4 respec-
tively. Note that if some ∼i-class has two α of type R3 appearing in different
∼i-zones (an ∼i-zone is a contiguous set of positions that are in the same ∼i-
class), then all β in that class must be of type R3. We encode this by requiring
that each ∼i-zone that contains an α of type R3 should begin with a position
of type P3, and symmetrically for R4 and P4. Both properties can be expressed
as a data-blind property that uses the profile marking (for the data-blind parts,
we can use full monadic second-order logic, since the run of a finite automaton,
without data, can be encoded by a data-blind formula in data normal form).
Then we say that each class with at least two P3 can contain no β that is not
of type R3. This can be done using two new predicate symbols. Next, if all α of
type R3 belong to the same ∼i-zone, we enforce that all β that are not of type
R3 also belong to this zone. This is done in a similar way.

Finally, we say that if there is a β and an α which have different status w.r.t.
R3, R4 (note that the β can be marked by neither), that are in the same ∼i-zone,
then they are neighbors. This is a data-blind property.

The only case left to explore is when there is exactly one subclass which
contains an α. This can be managed in a similar, but slightly less complicated,
way as the case with two such subclasses.

14

We now have to deal with formulas of type 2:

∀x∃y α(x) → [β(y) ∧ x 'i y ∧ ε(x, y)]

The only interesting case for ε(x, y) is ¬d≤1(x, y) ≡ d>1(x, y).
Thus our formula says that for every α there is a β in the same ∼i-class,

which is not a neighbor, and which belongs to a different ∼i+1-class. We first
note that if there are at least 4 ∼i+1-classes that contain a β, the condition is
always fulfilled. Thus we have to handle the cases with 1,2, or 3 such subclasses.

If there are 3 subclasses with a β, say with data values d1, d2, d3 (these are
data values on layer ∼i+1). We have to make sure that the following does not
occur: data values d2, d3 contain one β each, there is a position x with α, whose
∼i+1-class is d1, such that position x − 1 contains the unique β in subclass d2,
and position x + 1 contains the unique β in subclass d3. This can be described
by a predicate Q, and we then say that each ∼i-class with a βi

=3 has no Q.
Consider next the case with 2 subclasses with a β. Just as in the proof

for formulas of type 1(a), we mark these two ∼i+1-classes with R5 and R6,
respctively. Next, we mark all ∼i-zones that contain a β of type R5 with P5. All
α that are not of type R5 and not in a zone P5 are now taken care of, and we
mark them with a new predicate. Next, we need to differentiate the P5 zones
into the ones with 1, 2, or 3 β of type R5.

1. If there is only one such β, no α of type R6 can be it’s neighbor.
2. If there are two such β, no α of type R6 can be a neighbor of both of them.
3. If there are 3 or more such β, everything is fine.

These three conditions can all be expressed in data normal form.
Finally, if there is only 1 subclass with a β, there can be no α in this subclass,

and we distinguish three cases.

1. If there is only one β in the subclass, it can have no α neighbors.
2. If there is exactly two β in the subclass, they cannot be two positions apart

with an α between them.
3. If there is more then two β everything is fine.

Each of the cases is expressible in data normal form.
We have shown that each formula in the logic from Theorem 22 has an

equivalent formula in normal form. Theorem 22 now follows from Theorems 34
and 52.

A.3 Proof of Theorem 34

We assume that φ is in data normal form; see Definition 2. The conjuncts of
type (1) from the definition are easily taken care of. The properties they express
are regular, so we can ensure them by intersecting with the appropriate regular
expression after everything else has been taken care of.

Conjuncts of type (2)-(4) express properties of classes by referring to types.
Notice that, when talking of types, these conjuncts only use the expressions ”at
least one node”, ”has a node”, and ”at most one node”. Thus, the only relevant
information about a class string (where the class can be w.r.t. any of the k

15

equivalence relations), is the number of times each type appears. Furthermore,
if a type appears at least twice, the exact number of times is irrelevant.

We start by considering only conjuncts of type (2)-(4) where the equivalence
relation used is ∼k. If we have a footprint mapping f : T → {0, 1, 2}, where T
is the set of types appearing in φ, that tells us if a type appears 0, 1, or 2 or
more times, we know everything we need about the class string. We can easily
compute the set F of those footprints that are allowed by the conjuncts from
φ. If we construct, for each f ∈ F , a shuffle expression that accepts exactly
those strings that have footprint f , we can combine these expressions (using
the + operator) into one that accepts all correct class strings. Using the shuffle
operator on this expression gives an expression whose language is such that
every word can be extended with (level k) data values in such a fashion that the
conjuncts of φ that use ∼k are satisfied.

The idea is to use this construction inductively, starting with level k, until,
after using k shuffle operations, all conjuncts of type (2)-(4) are taken care of.

It remains to explain how to handle conjuncts of type (5). This is done using
an extended alphabet, where each symbol, in addition to the type, contains a
profile. The control of the shuffle expressions is used to ensure that the profiles
are assigned correctly. That is, the level i unordered controlled shuffle operation
uses a regular cut language Ki such that

– the first letter of each word must have a profile indicating that the previous
position belongs to a different ∼i-class;

– the last letter of each word must have a profile indicating that the next
position belongs to a different ∼i-class;

– all other positions have profiles indicating that the previous and next posi-
tions belong to the same ∼i-class.

B Ordered Shuffle Expressions

B.1 Proof of Theorem 41

The three inclusions in Theorem 41 are shown in the following three sections.

CSE are captured by SE. We show that given a language L and a regular
language K over alphabet A, we can define the language cshuffleK(L) using a
shuffle expression (without controlled cut). The basic idea is to color the start
and end of each subword from K with 0 or 1, using a scheme from [1]. We assume
without loss of generality, that K does not contain the empty word ε.

First, we expand the alphabet to contain some bookkeping information. Let
then A′ be A ∪ {0, 1} and let

K ′ = 0 ·K · 0 + 0 ·K · 1 + 1 ·K · 0 + 1 ·K · 1.

Second, let f : (A′)∗ → A be the morphism that erases the bookkeeping
information, defined by f(a) = a if a ∈ A and f(a) = ε if a ∈ {0, 1}.

Third, let L′ be the set of words w that are of the form (0 + 1)(A∗(01 +
01))∗A∗(0 + 1) and whose image f(w) belongs to L.

16

Finally, letM be the regular language ((0 + 1) · (A∗ · (00 + 11))∗ ·A∗ · (0 + 1)).
Now consider the SE

r = f(shuffle(L′) ∩ (K ′)∗ ∩M).

We claim that the languages defined by r and cshuffleK(L) are the same.
Suppose a nonempty word w belongs to the language of cshuffleK(L). Then

w can be cut into nonempty segments w1| . . . |wk such that each wi belongs to
K, and there is an equivalence relation ∼ on {w1, . . . , wk} such that for each
equivalence class of ∼, the sequence of all subwords belonging to the class, read
from left to right, form a word from L. (In the equivalence relation ∼, any two
consecutive segments wi and wi+1 are non-equivalent, for i = 1, . . . , k − 1.) Let
w′ be a word

c1w1c2c2w2c3c3 . . . ckckwkck+1 c1, . . . , ck+1 ∈ {0, 1}

such that ci+1 6= cj holds whenever i < j are such that wi ∼ wj holds, and
are chosen closest to each other for this property. Using a coloring argument,
one can show that such a word always exists; see [1]. Clearly, w′ belongs to
shuffle(L′) ∩ (K ′)∗ ∩M , and after f is applied, it is identical to w.

For the other inclusion, consider a word w described by the expression r. By
definition of r, there must be a way of inserting zeroes and ones into w such that
the resulting word w′ belongs to shuffle(L′)∩ (K ′)∗ ∩M . Since K is a language
over A, not A′, there is a unique way of cutting w′ into subwords w′1| . . . |w′k from
K ′. Since w′ belongs to M , the last symbol of w′i must be the same as the first
symbol of w′i+1, for all i = 1, . . . , k − 1. Let T = {θ1, . . . , θm} be a set of traces
witnessing the membership of w′ ∈ shuffle(L′), i.e., w′ ∈ combine(T). We must
show that for each trace θi = ui,1| . . . |ui,ni

∈ T , every segment ui,j must belong
to K ′. We know that ui,j cannot contain 00 or 11, since this is disallowed by
L′. Furthermore, ui,j cannot also contain 01 or 10, since otherwise the resulting
shuffle w′ would also contain 01, 10, contradicting to w′ ∈M . It remains to show
that each segment ui,j has length at least three, and begins and ends with one
of {0, 1}. Suppose this is not the case, and let ui,j be the leftmost segment in w′
that violates this property. We consider only the case when w′ does not begin
with {0, 1}, the other two are similar. Let then x be the position in the word
w′ that corresponds to the beginning of the segment ui,j ; this position has a
label a ∈ A′ \ {0, 1} = A. If x is the first position in the word, then the trace
θi containing x starts with a, a contradiction with L′. Otherwise, consider the
position x− 1. Since x was chosen leftmost, then the positions x− 2 and x− 1
belong to some non-violating segment, and therefore have labels in A and {0, 1}
respectively. This gives a subword of w′ of the form A{0, 1}A, a contradiction
with M .

SE captured by automata. The proof is by induction on the structure of a
shuffle expression. The cases of union, intersection with a regular language and
projection are easy. The only nontrivial part is the following lemma:

Lemma 1. If L is recognized by a level k multicounter automaton, then shuffle(L)
is recognized by a level k + 1 multicounter automaton.

17

Proof
Let A be the level k automaton for L. The general idea is that to accept

shuffle(w1, . . . , wn)

we simulate in parallel the runs of A on all the words w1, . . . , wn ∈ L. In order
to do this, we use the multiset at level k + 1 to store multiple configurations
of A. The idea is to define a folding operation, which takes a configuration
(q,m1, . . . ,mk), and folds it into a single level k multiset m. A dual unfolding
operation goes from m back to the configuration.

First, we define the folding operation. Then we show how it is used to get an
automaton for shuffle(L).

Let ak be the level k multiset defined by a0 = a and ai+1 = {ai}. The
folding of a sequence m1, . . . ,mk with respect to a is a level k multiset, denoted
[m1, . . . ,mk]a, defined by

[m1]a = m1

[m1, . . . ,mk]a = mk + {[m1, . . . ,mk−1]a + ak−1}.

In case mi is undefined, we use ⊥i instead of mi in the above construction, where
⊥ is a special symbol.

It is easily seen that the folding can be realized by an automaton. That is,
we can use a macroinstruction ”a-fold”, which transforms a configuration with
memory

m1, . . . ,mk

into one with memory

⊥, . . . ,⊥, [m1, . . . ,mk]a.

Dually, we use a macroinstruction ”a-unfold”, which does the inverse.
Now, we can use the folding operation to encode n level k configurations as

one level k + 1 multiset. We encode

(q1,m1
1, . . . ,m

1
k), . . . , (qn,mn

1 , . . . ,m
n
k)

in the single configuration

⊥, . . . ,⊥, [m1
1, . . . ,m

1
k]q1 + · · ·+ [mn

1 , . . . ,m
n
k]qn

.

The simulating automaton guesses when to switch from one A-configuration
to another. It folds the current configuration, stores it in the k+1-multiset, loads
the new configuration, and unfolds it. �

Automata are captured by CSE. In the following proof, it will be convenient
to assume that each transition has its own name. That it, the automaton has a
set T (names of transitions), and a mapping

T → Q×A× Counteropsk ×Q (6)

18

that says what each transition does. We will write A(t) to denote the result of
this mapping for a transition name t in an automaton A. A run is a sequence
of transitions t1 · · · tn that can be decorated with configurations c1 · · · cn+1 so
that transition ti takes the automaton from ci to ci+1. The run is accepting if it
admits a decoration where c1 is an initial and cn+1 is an accepting configuration.
(Note that the decoration with c1 · · · cn+1 need not be unique.)

Proposition B1 Let A be a higher-order multicounter automaton. There is a
controlled shuffle expression, which describes all accepting runs of A.

Clearly, once we have an expression for the transitions, we can use a projec-
tion to obtain the set of input words that are accepted. Therefore, this proposi-
tion will show the inclusion of 3 in 1 in Theorem 41. The proof of the Proposition
is by induction on the level k of A. For k = 1, the result is known [3].

Let us fix a level k + 1 automaton A, described as in (6). We begin by
definining a level k automaton B, which is going to correspond to what A does
to a single level k multiset. Then we will show that the accepting runs can be
obtained by shuffling accepting runs of B.

The automaton B has the same states as A; except that it also has a new
“limbo” state X. The automaton B has the same transition names as A, but the
corresponding actions are changed:

B(t) =

 (p, a, ε,X) if A(t) = (p, a, loadk, q)
(X, a, ε, q) if A(t) = (p, a, storek, q)
A(t) otherwise

By inductive assumption, the set L ⊆ T ∗ of accepting runs of B can be de-
scribed by a cut shuffle expression. Therefore, Proposition B1 will follow once
we establish the following Lemma:

Lemma 2. There are regular languages S,K ⊆ T ∗ such that the set of accepting
runs of A is exactly cshuffleK(L) ∩ S.

Proof
Let T ′ ⊆ T be the transitions of A that do a loadk. Then we set K to be
(T \ T ′) · T ′. The language S is defined to be the those t1 · · · tn ∈ T ∗ where for
each i = 1, · · · , n− 1 the source state of A(ti+1) is the same as the target state
of A(ti). �

C Emptiness of unordered shuffle expressions

C.1 Proof of Theorem 51

We show a decision procedure for emptiness of unordered (uncontrolled) shuffle
expressions USE. Furthermore, we show that these are weaker than unordered
controlled shuffle expressions.

Before we describe the decision procedure in Section C.3, we recall the basic
tools that will be used in this section and the next.

19

C.2 Semilinear sets and Presburger automata

A set X ⊆ Nk is called linear, if there are vectors v, v1, . . . , vn ∈ Nk such that

X = {v + i1v1 + · · ·+ invn : i1, . . . , in ∈ N} .

The vector v is called the base, while the vectors v1, . . . , vn are called the periods.
A set is called semilinear, if it is a finite union of linear sets.

There are two important properties of semilinear sets. The first is their con-
nection with Presburger formulas; while the second is their connection with
Parikh images.

We begin by recalling the connection of semilinear sets with Presburger for-
mulas. A Presburger formula is a formula that can use addition +, the constants
0, 1 and quantification over natural numbers ∃,∀. Multiplication is not allowed,
but free variables are allowed. When there are free variables x1, . . . , xk, a Pres-
burger formula can be seen as defining a set of vectors in Nk. For instance, the
formula

ϕ(x) = (∃y. x = y + y) ∧ (∃z. x = 1 + 1 + 1 + z)

defines the set of even natural numbers not smaller than 3. This set is semilinear,
which is no coincidence:

Theorem C1
The set of vectors in Nk defined by a Presburger formula with k free variables is
described by an effectively obtained semilinear set.

We now proceed to define Parikh images. Let w ∈ A∗ be a finite word. The
Parikh image πA(w) ∈ NA of this word is a vector, which on coordinate a ∈ A
has the number of occurrences of the letter a in the word w. When the alphabet
A will be understood from the context, we will sometimes omit the A subscript
and simply write π(w). The Parikh image can be also applied to languages:
π(L) = {π(w) : w ∈ L}.

Theorem C2 ([9])
The Parikh image of a regular language is semilinear.

Definition C3 A Presburger automaton (A, X) is a finite nondeterministic au-
tomaton A with states Q, along with a semilinear set X ⊆ NQ. The automaton
accepts a word if it has a run that ends in an accepting state, and where the
number of times each state is used in the run is consistent with X.

Presburger automata can be used to accept languages such as {anbmcm+n}.
Presburger automata can also be defined as a type of counter automata. In

this alternative definition, the automaton has a finite set C of counters, which
have integer (possibly negative) values. In each transition (ε-transitions are al-
lowed), the counters can be incremented or decremented (but they can not be
tested). The automaton accepts if at the end of the word, it reaches an accepting
state and all counters have value 0. One can easily show that the two definitions
are equivalent.

20

C.3 Decision procedure for USE

The general idea is that since there is no control over the cutting, only simple
counting is sufficient. We would like to use Presburger automata. However, this
will not work for a rather shallow reason: Presburger automata are not closed
under Kleene star, which is needed to recognize the language

{anbn : n ∈ N}∗ .

Our approach is to consider Presburger automata extended with Kleene star.
Fortunately, it turns out that this construction does not need to be nested
(i.e. we need not consider Presburger automata over Kleene stars of Presburger
automata).

An extended Presburger automaton is defined as follows. (We base this defi-
nition on the alternative definition of Presburger automata, where counters are
used). In the extended automaton, there is a limited form of zero-test allowed
during the run (and not only at the end of the run). In the limited form of
zero-test, the automaton can test if all counters are zero.

Lemma 3. The Parikh image of a language recognized by an extended Pres-
burger automaton is semilinear.

Proof
In the first step, one can easily show that the Parikh image of a (non-extended)
Presburger automaton is semilinear. This is because semilinear sets are closed
under intersection, projection and contain all Parikh images of regular languages.

By redoing the proof of Kleene’s theorem for regular word languages, one can
see that the Parikh image of an extended Presburger automaton can be obtained
by taking unions and Kleene stars of Parikh images of non-extended Presburger
automata.

Once this has been shown, the result follows, since semilinear sets are closed
under Kleene star

X∗ =
⋃
i∈N
{x1 + · · ·+ xn : x1, . . . , xn ∈ X} ,

which follows from Theorem C2. �

Theorem C4
Every language defined by a USE is recognized by some extended Presburger
automaton.

Proof
The proof is by induction on the size of the USE. One can easily see that ex-
tended Presburger automata are closed under union and projection (thanks to
nondeterminism); under concatenation (using a different two sets of counters for
the two concatenated words); and under Kleene star (thanks to the zero-test).

The only more difficult part is the unordered shuffle operation. But this is
easy, if there is no cutting involved. Indeed, since we have no control over where
the words will be cut, one can easily see that

ushuffle(L) = {w : π(w) ∈ π(L∗)} .

21

Therefore, in order to determine if a word w belongs to ushuffle(L), the automa-
ton need only verify a semilinear property of the Parikh image π(w). This can
be easily done using the counters. �

To give a feeling of what Presburger automata cannot do, we present here a
negative result.

Proposition C5 Extended Presburger automata are stronger than Presburger
automata. Furthermore, even extended Presburger automata do not recognize
all languages defined by UCSE.

Before we prove this proposition, we state an important Corollary, which
follows from the above proposition and from Theorem C4:

Corollary C6 USE are weaker than UCSE.

Proof (of Proposition C5)
The first part of the statement is witnessed by the language:

{anbn : n ∈ N}∗ .

We do not show that this language cannot be recognized by Presburger au-
tomata. The reader can fill in this proof, based on the more difficult proof of the
second part of the statement.

The language witnessing the second part of the statement is the language M
from Example 3: we claim it is not recognized by any extended Presburger
automaton. The general idea is that languages accepted by extended Presburger
automata satisfy a certain swapping condition, which is not satisfied by the
language M .

Let A be an extended Presburger automaton accepting M , with states Q.
For each pair of states p, q ∈ Q, let Lp,q be the set of words, which admit a run
that takes A from p to q, and does not change the counter values (i.e. for each
counter, the number of increments is balanced by the number of decrements).
Some of the languages Lp,q are finite, some are infinite. Let N be the length of
the longest word in the finite languages among Lp,q.

Let n be larger than both N and |Q|2 + 1. Consider the word

w = a2n

#a2n−1
· · ·#a4#a2#a1#b1#b2#b4# · · ·#b2

n−1
#b2

n

.

This word belongs to the language M , and therefore should be accepted. Let
ρ be an accepting run witnessing this acceptance. First we show that the only
zero-tests the automaton can do are in the prefix a2n

and in the suffix b2
n

.
Indeed, assume that there is a zero-test outside this prefix and suffix. We assume
without loss of generality that it is in the first half of the word (the other case
is analogous). Let q be the state in which this zero-test is done; and let p be the
initial state. This means that some prefix of the word w belongs to Lp,q. Since
the zero-test was done after reading the first 2n > N positions, the set Lp,q

must be infinite. This can be easily exploited to form a word outside M that is
accepted by the automaton.

22

Therefore, the accepting run does no zero-tests in the fragment

a2n−1
· · ·#a4#a2#a1b1#b2#b4# · · ·#b2

n−1
.

For i = n− 1, . . . , 1 let pi be the state assumed by ρ in the first position of the
block a2i

and let qi be the state assumed by ρ in the middle – that is 2i−1-st –
position of the block a2i

. If n− 1 is larger than the square of the state space of
A, there must be some i < j with pi = pj and qi = qj . We can therefore swap the
subword that leads from pi to qi with the subword that leads from pj to qj ; this
will not affect the number of states used in the run. Therefore, the word after
the swap will also be accepted by the automaton. This is a contradiction, since
after the swap, both the i-th and j-th block of a’s will have length 2i−1 + 2j−1.
�

The above result shows that even extended Presburger automata are not
strong enough to recognize language defined by UCSE. In [2] it was shown that
(unextended) Presburger automata are strong enough the recognize all UCSE
where the shuffle operation is on the top level. Therefore, the above lemma shows
that the approach from [2] breaks down when arbitrary UCSE are considered.

D Emptiness of unordered controlled shuffle expressions

D.1 Proof of Theorem 52

We actually focus on proving the following:

Theorem D1
The Parikh image of a language defined by a UCSE is semilinear.

Theorem 52 then follows as a corollary, since, as we will see, the Parikh image
is effectively obtained, and can therefore be tested for emptiness.

The following easy technical lemma will be convenient:

Lemma 4. Every UCSE is equivalent to one where intersection with regular
languages is used only next to the unordered controlled shuffle operation.

Note however, that the unordered controlled shuffle operation can be nested,
and therefore so can intersection with regular languages.

The proof of Theorem D1 is by induction on the number of nested unordered
controlled shuffle operations in the UCSE. We assume without loss of generality
that the expression is as in Lemma 4. All operations of the UCSE are handled
as in the Parikh theorem, the only new step is the case:

ucshuffleM (L) ∩K , (7)

where L is defined by a UCSE and K,M are regular languages.
We will reduce the statement to the following result:

Proposition D2 Let L ⊆ A∗ be a language with a semilinear Parikh image.
The language ucshuffleA(L) is definable by a Presburger automaton.

23

The assumptions in the above proposition are very strong, since we assume that
the words are cut into traces with one letter segments. In particular, a word
from L can be identified with its Parikh image, since unordered shuffles are
involved here. On the other hand, the conclusion is stronger, since we define
a Presburger automaton for the whole language, and not just to describe its
Parikh image. (The Parikh image of a Presburger automaton is semilinear.) The
above Proposition D2 is related to a result in [2]. The result in [2] is stronger in
that it considers trees and not words, on the other hand it is weaker in that L
is a finite language in [2].

In Section D.2, we show how the crucial inductive step (7) from Theorem D1
can be reduced to Proposition D2. Then, in Section D.3, we prove the proposi-
tion.

D.2 Reduction to Proposition D2

We now proceed to show how Theorem D1 follows from Proposition D2. As
noted previously, the crucial step is showing that the Parikh image

π(ucshuffleM (L) ∩K) ⊆ NA

is semilinear, as long as L ⊆ A∗ is defined by an UCSE and K,M ⊆ A∗ are
regular languages. Our proof is a long sequence of algebraic manipulations. In
the end, we will refer to Lemma 3, which says that the Parikh image of an
extended Pressburger automaton is semilinear.

By unraveling the definition, the above set becomes

{π(θ1) + · · ·+ π(θk) : θ1, . . . , θk ∈ cutM (L),
K contains an unordered combination of θ1, . . . , θk} .

(8)

Let A be a finite deterministic automaton recognizing the language K; with
states Q. Each word w ∈ A∗ induces a state transformation fw : Q→ Q. Given
a trace θ = w1| · · · |wk ∈ (A∗)∗, we denote by short(w) the trace fw1 | · · · |fwk

.
This new trace is over a large alphabet QQ, however, each word in the trace
has only one letter. Furthermore, let K ′ ⊆ (QQ)∗ be the set of those sequences
f1 . . . fk of state transformations, such that the composition fk ◦ · · · ◦ f1 maps
the initial state of A to an accepting state. Clearly, for any traces θ1, . . . , θk over
A, the following two conditions are equivalent:

– K contains an unordered combination of θ1, . . . , θk;
– K ′ contains an unordered combination of short(θ1), . . . , short(θk)).

Therefore, the set (8) becomes:

{π(θ1) + · · ·+ π(θk) : θ1, . . . , θk ∈ cutM (L),
K ′ contains an unordered combination

of short(θ1), . . . , short(θk))}.
(9)

This can be restated in the following way:

{y1 + · · ·+ yk : there exist θ1, . . . , θk ∈ cutM (L) such that
K ′ contains an unordered combination

of short(θ1), . . . , short(θk)) and
y1 = π(θ1), . . . , yk = π(θk)} .

(10)

24

The point of restating the set (9) in the form (10) is to switch from quantifying
over θ1, . . . , θk to quantifying over short(θ1), . . . , short(θk):

{y1 + · · ·+ yk : there exist σ1, . . . , σk ∈ short(cutM (L)) such that
K ′ contains an unordered combination of σ1, . . . , σk and
for each i = 1, . . . , k there exists θi ∈ cutM (L)
such that yi = π(θi) and σi = short(θi) .}

(11)

We want to quantify over σ1, . . . , σk, because these are traces where each word
has a single letter (a state transformation); and as such can be identified with
their Parikh images π(σ1), . . . , π(σk). In particular, the last two lines in (11) can
be seen as expressing a property of two vectors: yi and π(σi). In the following
lemma, we show that this vector property is semilinear:

Lemma 5. The following relation is semilinear:

R = {(π(θ), π(short(θ)) : θ ∈ cutM (L)} ⊆ NA × NQQ

.

Proof
We consider a new language P . The idea is that each word from P contains
information about both θ and short(θ)). The language P contains words

w ∈ (A∗QQ)Q

such that: 1) if the labels from QQ are removed, the words belongs to L; 2) every
maximal subword in A+ belongs to M ; and 3) if u is a maximal subword of w
in A+QQ, then the last letter describes the state transformation of the rest of
the word. To obtain the language P from L, the only necessary operations are
expanding the alphabet and intersecting with a regular language (the intersection
checks properites 2) and 3)). Therefore, the UCSE for P has the same nesting
depth of the unordered controlled shuffle operation as the UCSE for L. Therefore,
by inductive assumption from Theorem D1, the Parikh image π(P) is semilinear.
Finally, the relation R in the statement of the lemma can be computed from π(P)
by using projections; therefore R is semilinear. �

A consequence of the above lemma is that the Parikh image of

short(cutM (L))

is semilinear, since it is the projection of the relation R onto the π(short(θ))
coordinate. Therefore, the set from (11) can be restated as

{y1 + · · ·+ yk : there exist one-letter traces σ1, . . . , σk over QQ such that
K ′ contains an unordered combination of σ1, . . . , σk and
(y1, π(σ1)), . . . , (yk, π(σk)) ∈ R} .

(12)

Recall that our goal is to prove that the above set is semilinear. We will
prove a slightly more general result, which only uses the assumption that R is
semilinear and K ′ is regular (and not necessarily of the special form that appears
in this proof). To clean up the notation, in the below proposition we replace K ′

by K, replace QQ by A and use the name B for the coordinates of the vectors
y1, . . . , yk:

25

Proposition D3 Let X ⊆ NA and R ⊆ NA × NB be semilinear sets and let
K ⊆ A∗ be a regular language. The following subset of NB is semilinear:

{y1 + · · ·+ yk : there exist one-letter traces σ1, . . . , σk over A such that
K contains an unordered combination of σ1, . . . , σk and
(y1, π(σ1)), . . . , (yk, π(σk)) ∈ R} .

Before we proceed with the proof of this proposition, we would like to alert
the reader to an important aspect of the clause “K contains an unordered com-
bination of σ1, . . . , σk”. The reader will recall that in an unordered combination
(or any combination, for that matter), the segments of each trace must be sep-
arated by segments from other traces. For instance, abc is not an unordered
combination of traces a|b and c; the only unordered combinations are acb and
bca. This requirement will pose difficulties, and it makes the easy proofs from
Section C inapplicable to this case.

Our proof of Proposition D3 consists of two steps. First we show in Lemma 6,
that without loss of generality we may assume that the relation R in the state-
ment above can be assumed to be in a certain normal form, and prove a key
property of this normal form. Second, we use this property to prove Propo-
sition D3, under the assumption that Proposition D2 holds. This finishes the
reduction from Theorem D1 to Proposition D2.

The nonzero domain of a vector is the set of coordinates where it has nonzero
values. Two vectors are independent if they have disjoint nonzero domains. The
defining vectors of a semilinear set are all the base and period vectors of its linear
components. A semilinear set is in normal form if a) all its defining vectors are
pairwise independent; and b) every linear component has a nonzero base vector.

Lemma 6. Without loss of generality, we may assume that the relation R is in
normal form.

Proof
The general idea is that for each base and period vector, we add new coordinates
R, so that the vectors use disjoint coordinates. We now give a more formal
argument. Let f : C → D be a mapping. This mapping can be naturally carried
over to vectors: [f] : NC → ND, with [f](v) having on coordinate d ∈ D the sum
of all values of v on coordinates c ∈ C with f(c) = d.

It is fairly easy to see that for any semilinear relation R, in particular the
semilinear relation R ⊆ NA × NB in Proposition D3, one can find

C, f : C → A ∪B, S ⊆ NC in normal form,

such that R is the image of S under [f]. By basic properties of regular languages,
f−1(K) is a regular language. Using f and S, the set from Proposition D3 can
be written as:

{[f](y1) + · · ·+ [f](yk) : there exist one-letter traces σ1, . . . , σk over C such that
f−1(K) contains an unordered combination of σ1, . . . , σk and
(y1, π(σ1)), . . . , (yk, π(σk)) ∈ S} .

26

The reduction then follows, since [f] can be moved outside the whole expression,
thanks to the equality:

[f](y1) + · · ·+ [f](yk) = [f](y1 + · · ·+ yk)

�

Normal form of semilinear relations. In this section we analyze the struc-
ture of semilinear sets in normal form. Using the assumption that R is in normal
form, we will show that the set

{y1 + · · ·+ yk : (x1, y1), . . . , (xk, yk) ∈ R} ⊆ NB

only depends only on the sum x1 + · · ·+xk ∈ NA and not the individual compo-
nents x1, . . . , xk of the sum. In fact, we will show an even stronger result, where
the relationship between x1 + · · ·+ xk and y1 + · · ·+ yk is a semilinear relation:

Lemma 7. Let R ⊆ NA×NB be in normal form. There are semilinear relations

S ⊆ NA × NB T ⊆ NA

such that for any x1, . . . , xn ∈ NA and y ∈ NB, we have

x1, . . . , xn ∈ T and
(x1 + · · ·+ xk, y) ∈ S ⇐⇒ ∃y1, . . . , yk. y1 + · · ·+ yk = y and

(x1, y1), . . . , (x1, yk) ∈ R (13)

Proof
We set T to be the projection of R onto NA, i.e. T is the set of vectors x ∈ NA

such that (x, y) ∈ R holds for some y ∈ NB .
We now define what vectors z belong to S. Let the linear sets comprising

R be R1, . . . , Rk. Let v1, . . . , vm an enumeration of all the defining vectors of
R, i.e. the defining vectors of R1, . . . , Rk. By assumption on R being in normal
form, these vectors have disjoint nonzero domains. In particular, every vector
z ∈ NA × NB has at most one decomposition:

z = a1v1 + · · ·+ amvm . (14)

In the above decomposition, we say a vector vi is used if ai is nonzero. In order
to satisfy the right hand side of (13), a vector must admit such a decomposition.
Furthermore, it must also satisfy:

(*) Let Ri be one of the linear sets R1, . . . , Rk. If a period vector from
Ri is used, then the base vector of Ri is also used.

The above two conditions form the definition of the set S from (13): it is defined
to be the set of vectors that admit a decomposition as in (14), and where property
(*) is satisfied. The set S is semilinear, since its definiton can be formalized by
a Presburger formula.

We now proceed to show that the above defined set satisfies the equiva-
lence (13). The right-to-left implication is immediate; we only do the left-to-right
implication here.

27

Let then x1, . . . , xn ∈ NA and y ∈ NB be such that S(x1 + · · · + xn, y) is
satisfied. We need to find a decomposition

y1 + · · ·+ yn = y

such that the left-hand side of (13) is satisfied. The proof is by induction on n.
For n = 0 the statement is trivially true.

Consider now the vector x1 ∈ NA. By assumption on R being in normal form,
there is at most one linear set Ri such that (x1, y1) ∈ Ri may hold, for some
yi ∈ NB . We partition the period vectors of Ri into two sets: Wi containing the
defining vectors with nonzero values on coordinates from A; and Vi containing
the remaining defining vectors of Ri. Consider now a vector y1 ∈ NB such that
(x1, y1) ∈ Ri holds, and its (unique) decomposition

(x1, y1) = b1v1 + · · ·+ bmvm . (15)

We partition the coordinates b1, . . . , bm into three groups. First there are the
coordinates corresponding to vectors from Wi, these are uniquely determined
by the value x1 and do not depend on the choice of y1. Then there are the
coordinates corresponding to vectors from Vi, these are dependent on both x1

and y1. Finally, there are the coordinates corresponding to defining vectors of
the linear components other than Ri, these have all value 0 regardless of the
choice of y1. Choose then y1 so that the decomposition as in (15) of the vector

(x1 + · · ·+ xm, y)− (x1, y1)

does not use any vectors from Vi. This way, the above vector satisfies (*), and
therefore it belongs to S, so the inductive assumption can be applied. �

Proof of Proposition D3 We now conclude the proof of Proposition D3, under
the assumption that the relation R is in normal form. Since R is in normal form,
we can apply Lemma 7, and replace the set in the statement of Proposition D3
with

{y : there exist σ1, . . . , σk such that
K contains an unordered combination of σ1, . . . , σk and
π(σ1), . . . , π(σk) ∈ T and (π(σ1) + · · ·+ π(σk), y) ∈ S}

Since the last line above is a condition on the Parikh images of σ1, . . . , σn and
their combination, the above set is the same as:

{y : ∃w ∈ ucshuffleA(L) ∩K .(π(w), y) ∈ S} , (16)

where L ⊆ A∗ is the set of words with a Parikh image in T . We will show that
the set

{π(w) : w ∈ ucshuffleA(L) ∩K}

28

is semilinear, and therefore so is (16), its image under the semilinear relation S.
(Recall that the subscript A in ucshuffleA(L) means that each segment must
belong to A, i.e. have only one letter.)

But this last step immediately follows from Proposition D2. Indeed, by this
proposition, the language ucshuffleA(L) is recognized by a Presburger automa-
ton. Since Presburger automata are closed under intersection with regular lan-
guages, then the language

ucshuffleA(L) ∩K

is also recognized by a Presburger automaton and therefore has a semilinear
Parikh image.

D.3 UCSE for Parikh languages

In this section, we prove Proposition D2. Recall the statement of that result:

Let L ⊆ A∗ be a language with a semilinear Parikh image. The language
ucshuffleA(L) is definable by a Presburger automaton.

The following lemma shows that Proposition D2 is closed under finite unions:

Lemma 8. Let L1, . . . , Lk ⊆ A∗ be Parikh languages. If each ucshuffleA(Li) is
definable by a Presburger automaton, then so is ucshuffleA(L1 ∪ · · · ∪ Lk).

Proof
The Presburger automaton simulates all the automata for ucshuffleA(Li) in par-
allel. It guesses for each position in the word which language Li corresponds to
that position. �

By the above lemma, it is enough to consider the case when the Parikh
image of L is linear. Our objective is to define a Presburger automaton for
ucshuffleA(L). Since L is linear and only the Parikh image of L is relevant, we
may assume that L is of the form:

w0(w1 + · · ·+ wn)∗ with w0, w1, . . . , wn ∈ A∗ .

(Here the word w0 corresponds to the base vector, and the words w1, . . . , wn

correspond to the period vectors.) We first define the automaton, and then prove
it’s correctness.

Lemma 9. Without loss of generality, we may assume that all the words w0, w1, . . . , wn

use disjoint alphabets, and no letter is used twice.

Proof
The technique is the same as in the proof of Lemma 6. Another argument is that
in our construction, Proposition D2 is only applied when the Parikh image of L
is in normal form, which assures the statement of the lemma. �

We use Ai to denote the labels occurring in the word wi. We use the name
dog labels for the letters in the word w0 and the name sheep labels for the letters
from the words w1, . . . , wn.

29

Consider the following constant:

N = 7|A|2 (17)

Using the same type of argument as in the proof of Lemma 8, it is suffi-
cient to construct a Presburger automaton A that recognizes those words in
ucshuffleA(L) where each label from A is used at least N times. Indeed, when
some label is used at most N times, then the at most N words from L that
use this label can be specially marked by the Presburger automaton and treated
separately.

The Presburger automaton A we define works as follows: it checks that for
each i = 0, . . . , n, every two letters from wi occur the same number of times
(and at least N times).

Clearly the above automaton accepts all words from ucshuffleA(L) where
each label occurs at least N times. We need to show that it does not accept
anything else. Let then a1 · · · ak be a word accepted by A. We claim, that for
each i = 0, . . . , k we can find a coloring

α : {1, . . . , k} → ∆ |∆| ≥ N

of the positions a1, . . . , ak such that the following invariant is satisfied:

– For each color d ∈ ∆, the positions assigned label d are a permutation of
some word in L.

– At most N colors d ∈ ∆ are used for positions with sheep labels. Moreover,
no two successive positions with sheep labels have the same color.

– No two successive positions in {1, . . . , i} are assigned the same color.

For i = k, the invariant clearly implies that the word belongs to ucshuffleA(L).
Before we show that the invariant can be satisfied, we need to introduce some
auxiliary notation and results.

Clusters For a set B ⊆ A of labels, we say a set of positions V ⊆ {1, . . . , k} in a
word a1 · · · ak word forms a B-cluster, if the labels of these positions are exactly
B (without repetitions). The first condition in the invariant can be restated in
terms of clusters:

Fact D4 The set of positions V ⊆ {1, . . . , k} that are assigned a color d ∈ ∆
are a permutation of some word in L if and only if V can be partitioned into a
disjoint union V0, V1, . . . , Vk, where V0 is an A0-cluster, while each of V1, . . . , Vk

is an Ai-cluster for some i = 1, . . . ,m.

Recall the constant N defined in (17).

Lemma 10. Let B ⊆ A and let Z ⊆ {1, . . . , k} be a union of at least N disjoint
B-clusters. One can assign at most N colors to the positions in Z so that each
two successive positions in Z have different colors, and each class is a disjoint
union of B-clusters.

30

Proof
We will construct a partial coloring β : Z → {1, . . . , N}, so that each two
successive positions in the domain of Z have different colors, and each class
(i.e. set of positions from Z that are assigned the same color) is a disjoint union
of B-clusters. At the end, the domain of β will be all of Z, thereby proving the
lemma.

Claim. Let Y ⊆ Z be a union of more than 2|B| disjoint B-clusters. There is a
B-cluster X ⊆ Y that does not contain two successive positions.

Proof
By successively adding positions to X, and avoiding neighbors of the already
chosen positions. �

Since Z contains N > 2|B| + 4|B| clusters, we can iterate the above claim
4|B| times, and find a partial coloring β whose domain has at 4|B| clusters, each
of which is assigned a different color.

To this assignment β we will now successively add B-clusters, until its domain
exhausts all of Z. During the process, we will always make sure that β uses at
least 4|B| colors. Let Y ⊆ Z be the domain of β, and let X ⊆ Z be a B-cluster
disjoint with Y . We will add X to the domain of β. The problem is that X might
contain two successive positions, so some swapping with elements already in Y
might be necessary.

Let Γ be the set of colors that are used for neighbors of the positions in X.
This set has at most 2|B| colors.

Claim. We can find nonneighboring positions yb, one for each label b, such that
each yb has a label b and a color outside Γ .

Proof
We use the assumption that β uses many colors. We successively chose the
positions yb, avoiding neighbors of the already chosen positions. �

Let yb be as in the claim above and let d be a color that does not occur in
any of the at most 2|B| neighbors of the nodes yb. By assumption on N > 2|B|,
the color d can be found. We modify the coloring β in the following way. We add
X to domain of β. For each b ∈ B, we assign d to the position yb, while to the
(unique) b-labeled position in the cluster X we assign the old color of yb. �

Proof of the invariant We first show the invariant for i = 0, and then show
how to inductively advance it from i to i+ 1.

Thanks to the counting properties verified by A, we know that a coloring α
can be found so that the first and third properties of the invariant are satisfied
for i = 0. The second condition is a consequence of Lemma 10.

We now proceed to show the inductive step, and assume that α(i) = α(i+ 1)
(otherwise we keep α as it is and proceed with i+ 1). Thanks to the second item
in the invariant, either i or i + 1 must have a dog label. We assume that i has
a dog label, the other case is resolved in the same way. Let d be the color α(i).
In a first step, we make sure that no position with a sheep label is assigned the
color d:

31

Lemma 11. The coloring α can be modified so that the invariant is still satisfied
for i, and moreover the class of position i contains no sheep labels.

Before we proceed with a proof of this lemma, we show how it can be used
to complete the induction step. Thanks to the above lemma, the class of d is
simply an A0 cluster V . If after applying Lemma 11, the colors in position i and
i + 1 are still different, then the label a of position i + 1 must be a dog label.
Let W be all the occurrences of a in the word. Since V contains |A0| positions
and W contains at least N > 2|A0| + 1 positions, there must be some position
j ∈W that is not adjacent to a position in V , and is not assigned the same color
as position i. We swap the colors for i+ 1 and j. By choice of j, the invariant is
no satisfied for i+ 1.

We now show Lemma 11.

Proof (of Lemma 11)
Let d be the color α(i). Assume that i contains sheep labels. We partition the
class α−1(d) into clusters V0, . . . , Vn as in Fact D4. Here V0 are the dog labels,
and V1, . . . , Vn are the sheep labels.

The general idea is that we pick any other color e that does not have sheep
letters, and assign the sheep letters in the class α−1(d) to the color e. In the
process, however, we need to be careful not to introduce any violations of the
neighborhood condition (i.e. conditions 2 and 3 of the invariant).

Let then e be some color such that the class α−1(e) does not contain any
sheep labels, and is therefore an A0-cluster W . Such a color must exists by the
assumption that few colors are used for sheep labels. Let V be all the clusters
among V1, . . . , Vn that contain a position adjacent to one of the positions in W .
For positions from V1, . . . , Vn that are not from V, we pick the color e.

It remains to pick a color for the positions from V. Clearly, V contains at
most 2|A0| clusters, and therefore involves at most 2|A0||A| positions, with at
most 4|A0||A| neighbors. As long as we do not use the colors from the 4|A0||A|
neighbors, we will not violate the neighborhood condition. Since there are at
least

N ≥ 4|A0||A|+ 3

colors available for sheep labels, we can therefore pick a new color other than
d, e for the positions in V so that none of the positions in V violate the neighbor-
hood conditions, and the second item of the invariant is satisfied. (Note that no
two positions from V are neighboring, since otherwise the original assignment α
would not have satisfied condition 2 of the invariant.) �

32

