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Abstract. This paper is about mso+u, an extension of monadic second-
order logic, which has a quantifier that can express that a property of sets
is true for arbitrarily large sets. We conjecture that the mso+u theory of
the complete binary tree is undecidable. We prove a weaker statement:
there is no algorithm which decides this theory and has a correctness
proof in zfc. This is because the theory is undecidable, under a set-
theoretic assumption consistent with zfc, namely that there exists of
projective well-ordering of 2ω of type ω1. We use Shelah’s undecidability
proof of the mso theory of the real numbers.

1 Introduction

This paper is about mso+u, which is the extension of mso by the unbounding
quantifier. The unbounding quantifier, denoted by

UX. ϕ(X),

says that ϕ(X) holds for arbitrarily large finite sets X. As usual with quantifiers,
the formula ϕ(X) might have other free variables except for X. The main con-
tribution of the paper is the following theorem, which talks about the complete
binary tree 2∗.

Theorem 1.1. Assuming that there exists a projective well-ordering of 2ω of
type ω1, it is undecidable if a given sentence of mso+u is true in the complete
binary tree.

The assumption on the projective ordering can be seen as a set theory axiom.
The assumption follows from the axiom V=L, which is relatively consistent with
zfc. Therefore, if zfc has a model, then it has one where the assumption of
Theorem 1.1 is true, and therefore it has a model where the mso+u theory of the
complete binary tree is undecidable. In particular, there is no algorithm which
decides the mso+u theory of the complete binary tree, and has a correctness
proof in zfc. Although the theorem stops short of full undecidability, which
we conjecture to be the case, it seems to settle the decidability question for all
practical purposes.

? The first and fourth author are supported by ERC Starting Grant “Sosna”, the third
author is supported by the Polish NCN grant DEC-2012/07/D/ST6/02443.



Background. This paper is part of a programme researching the logic mso+u,
i.e. monadic second-order logic extended with the U quantifier. The logic was
introduced in [Boj04], where it was shown that satisfiability is decidable for for-
mulae on infinite trees where the U quantifier is used once and not under the
scope of set quantification. A significantly more powerful fragment of the logic,
albeit for infinite words, was shown decidable in [BC06] using automata with
counters. These automata where further developed into the theory of cost func-
tions initiated by Colcombet in [Col09]. Cost functions can be seen as a special
case of mso+u in the sense that decision problems regarding cost functions, such
as limitedness or domination, can be easily encoded into satisfiability of mso+u
formulae. This encoding need not be helpful, since the unsolved problems for
cost functions get encoded into unsolved problems from mso+u.

The added expressive power of mso+u can be used to solve problems that do
not have a simple solution in mso alone. An example is the star height problem,
one of the most difficult problems in the theory of automata, which can be
straightforwardly reduced to the satisfiability of mso+u on infinite words; the
particular fragment of mso+u used in this reduction is decidable by [BC06].
An example of an important unsolved problem that reduces to mso+u is the
decidability of the nondeterministic parity index problem [CL08].

So far, most research on mso+u has focussed on the weak variant, call it
wmso+u, where only quantification over finite sets is allowed. Satisfiability is
decidable for wmso+u over infinite words [Boj11] and infinite trees [BT12].
In a parallel submission to this conference, it is shown that wmso+u remains
decidable over infinite trees even after adding quantification over infinite paths.
The decidability proofs use automata with counters.

Undecidability. The first strong evidence that mso+u can be too expressive was
given in [HS12], where it was shown that mso+u can define languages of infi-
nite words that are arbitrarily high in the projective hierarchy from descriptive
set theory. The present paper builds on that observation. We show that, using
the languages from [HS12], one can use mso+u on the complete binary tree 2∗

to simulate a variant of mso on the Cantor set 2ω, which we call projective mso.
Projective mso is like mso, except that set quantification is restricted to projec-
tive sets. As shown by Shelah in [She75], the mso theory of 2ω is undecidable.
From the proof of Shelah it follows that, under the assumption that there exists
a projective well-ordering of 2ω, already projective mso is undecidable on 2ω.
Therefore, thanks to our reduction, mso+u is undecidable on 2∗.

2 mso+u on 2∗

We consider the following logical structures: the complete binary tree 2∗, the
Cantor set 2ω, and the union of the two 2≤ω. In the complete binary tree 2∗,
the universe consists of finite strings over {0, 1}, called nodes, and there are
predicates for the lexicographic and prefix orders. The prefix order corresponds
to the ancestor relation. In the Cantor set 2ω, the universe consists of infinite
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strings over {0, 1}, called branches, and there is a predicate for the lexicographic
order. Finally, in 2≤ω, the universe consists of both nodes and branches, and there
are predicates for the prefix and lexicographic order. In 2≤ω, the prefix relation
can hold between two nodes, or between a node and a branch. The lexicographic
order is a total order on both nodes and branches, e.g. 0 < 0ω < 01.

Two fundamental theorems about mso are that the mso theory is decidable
for 2∗, but undecidable for 2ω, and therefore also undecidable for 2≤ω. The
decidability was shown by Rabin in [Rab69], while the undecidability was shown
by Shelah in [She75] conditionally on the Continuum Hypothesis, and by Shelah
and Gurevich in [GS82] without any conditions.

The projective hierarchy. Consider a topological space X. The family of Borel
sets is the least family of subsets of X that contains open sets, and is closed under
complements and countable unions. Define the family of projective sets to be the
least family of subsets of X which contains the Borel sets, and is closed under
complements and images under continuous functions. The projective sets can be
organised into a hierarchy, called the projective hierarchy, where Σ1

0 = Π1
0 is the

class of Borel sets, Π1
n is the class of complements of sets from Σ1

n, and Σ1
n+1

is the class of images of sets from Π1
n under continuous functions. Additionally,

∆1
n is the intersection of Σ1

n and Π1
n. When the space X is not clear from the

context, we add it in parentheses, e.g. Σ1
n(X)

We are mostly interested in the projective hierarchy for the space 2ω with
the topology of the Cantor set. This topology is induced by a metric, where the
distance between two infinite bit strings is the inverse of the first position where
they differ. We write Σ1

n(2ω) for the subsets of 2ω that are in level Σ1
n of the

projective hierarchy under this topology.

The main result. The main result of this paper is Theorem 1.1 from the intro-
duction, which says that the mso+u theory of 2∗ is undecidable. The proof of
Theorem 1.1 is by a reduction from the undecidability of mso on 2ω. Our proof
uses a stronger undecidability version of mso on 2ω, where instead of full mso we
have a logic called projective mso, where quantification is restricted to projective
sets, as defined later in Section 2.1. We are unable to prove the projective mso
theory of 2ω to be undecidable without any conditions, or even conditionally
on the Continuum Hypothesis, but only assuming the stronger assumption that
there exists a projective well-ordering of 2ω of type ω1.

This assumption can be seen as a conjunction of two assumptions: the Con-
tinuum Hypothesis (the type ω1 part) and that the well-ordering is “definable”
in some sense (the projective part). As shown in [GS82] the mso theory of 2ω

remains undecidable even without the Continuum Hypothesis. This does not
help us, because our reduction to mso+u crucially depends on the definability.

Before proving the theorem, we observe the following corollary.

Corollary 2.1. If zfc is consistent, then there is no algorithm which decides
the mso+u theory of 2∗ and has a proof of correctness in zfc.
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Proof. [The following proof is in zfc ] If zfc is consistent, then Gödel’s con-
structible universe L is a model of zfc, as shown by Gödel (for a modern treat-
ment of this topic see Chapter 13 and specifically Theorem 13.6 in [Jec02]). In
Gödel’s constructible universe, there exists a well-ordering of 2ω of type ω1 that
is in level ∆1

2 of the projective hierarchy on 2ω × 2ω ([Jec02, Theorem 25.26]).
Therefore, if zfc is consistent, then by Theorem 1.1 it has a model where the
mso+u theory of 2∗ is undecidable. ut

2.1 Projective mso on 2≤ω, and its reduction to mso+u on 2∗

For n ≤ ω, define the syntax of mson to be the same as the syntax of mso,
except that instead of one pair of set quantifiers ∃X and ∀X, there is a pair of
quantifiers ∃iX and ∀iX for every i ≤ n. To evaluate a sentence of mson over
a structure, we need a sequence {Xj}j≤i of families of sets, called the monadic
domains. The semantics are then the same as for mso, except that the quantifiers
∃j and ∀j are interpreted to range over subsets of the universe that belong to
Xj . First-order quantification is as usual, it can quantify over arbitrary elements
of the universe. We write mso[X1,X2, . . .] for the above logic with the monadic
domains being fixed to X1,X2, . . .. Standard mso for structures with a universe Ω
is the same as mso[P(Ω)], i.e. there is one monadic domain for the powerset of
the universe. If Ω is equipped with a topology, we define projective mso over Ω
to be

mso[Σ1
1(Ω),Σ1

2(Ω), . . .]

The expressive power of projective mso is incomparable with the expressive
power of mso. Although projective mso cannot quantify over arbitrary subsets,
it can express that a set is in, say, Σ1

1.

Example 2.2. In the structure 2≤ω, being a node is first-order definable: a node
is an element of the universe that is a proper prefix of some other element.
Since there are countably many nodes, every set of nodes is Borel, and therefore
in Σ1

1(2≤ω). Therefore, in projective mso on 2≤ω one can quantify over arbitrary
sets of nodes. It is easy to see that a subset of 2≤ω is in Σ1

n(2≤ω) if and only if it
is a union of a set of nodes and a set from Σ1

n(2ω). It follows that projective mso
on 2≤ω has the same expressive power as the logic

mso[P(2∗),Σ1
1(2ω),Σ1

2(2ω), . . .].

Example 2.3. In projective mso on 2≤ω, one can say that a set of branches
is countable. This is by using notions of interval, closed set, and perfect. A
set of branches is open if and only if for every element, it contains some open
interval around that element. A perfect is a set of branches which is closed
(i.e. its complement is open) and contains no isolated points. The notions of open
interval, closed set, and perfect are first-order definable. By [Kec95, Theorem
29.1], a set of branches is countable if and only if it is in Σ1

1(2ω) and does not
contain any perfect subset, which is a property definable in projective mso.
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The following lemma shows that the projective mso theory of 2≤ω can be
reduced to the mso+u theory of 2∗.

Lemma 2.4. For every sentence of projective mso on 2≤ω, one can compute an
equivalently satisfiable sentence of mso+u on 2∗.

The proof uses Theorem 5.1 from [HS12] and the following lemma.

Lemma 2.5. Suppose that L1, L2, . . . ⊆ Aω are definable in mso+u, and let

Xi
def
= {f−1(Li)|f : 2ω → Aω is a continuous function}.

Then for every sentence of mso[P(2∗),X1,X2, . . .] on 2≤ω, one can compute an
equivalently satisfiable sentence of mso+u on 2∗.

Proof. The proof of this lemma is based on the observation that, using quantifi-
cation over sets of nodes, one can quantify over continuous functions 2ω → Aω.

Call a mapping f : 2∗ → A ∪ {ε} proper if on every infinite path in 2∗, the
labelling f contains infinitely many letters different than ε. If f is proper then
define f̂ : 2ω → Aω to be the function that maps a branch to the concatenation
of values under f of nodes on the branch. It is not difficult to see that a function
g : 2ω → Aω is continuous if and only if there exists a proper f such that g = f̂ ,
see e.g. Proposition 2.6 in [Kec95]. Since a mapping f : 2∗ → A ∪ {ε} can be
encoded as a family of disjoint sets {Xa ⊆ 2∗}a∈A, one can use quantification over
sets of nodes to simulate quantification over continuous functions g : 2ω → Aω.

The reduction in the statement of the lemma works as follows. First-order
quantification over branches is replaced by (monadic second-order) quantifica-
tion over paths, i.e. subsets of 2∗ that are totally ordered and maximal for that
property. For a formula ∃X ∈ Xi. ϕ, we replace the quantifier by existential
quantification over a family of disjoint subsets {Xa}a∈A which encode a con-
tinuous function. In the formula ϕ, we replace a subformula x ∈ X, where x is
now encoded as a path, by a formula which says that the image of x, under the
function encoded by {Xa}a∈A, belongs to the language Li. In order to verify if a
given element belongs to the language Li definable in mso+u on infinite words,
we can use a formula of mso+u on infinite trees. ut

Proof (of Lemma 2.4). Theorem 5.1 of [HS12] shows that there is an alphabet
A such that for every i ≥ 1, there is a language Li ⊆ Aω which is definable
in mso+u on infinite words and hard for Σ1

i (2ω). It is easy to check (see Ap-
pendix A.2, Fact 1) that Li is in fact complete for Σ1

i (2ω). Apply Lemma 2.5 to
these languages. By their completeness, the classes X1,X2, . . . in Lemma 2.5 are
exactly the projective hierarchy on 2ω, and therefore Lemma 2.4 follows thanks
to the observation at the end of Example 2.2. ut

Before we move on, we present an example of a nontrivial property that can
be expressed in the projective mso on 2≤ω.
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Example: projective determinacy. A Gale-Stewart game with winning condition
W ⊆ 2ω is the following two-player game. For ω rounds, the players propose bits
in an alternating fashion, with the first player proposing a bit in even-numbered
rounds, and the second player proposing a bit in odd-numbered rounds. At the
end of such a play, an infinite sequence of bits is produced, and the first player
wins if this sequence belongs to W , otherwise the second player wins. Such a
game is called determined if either the first or the second player has a winning
strategy, see [Kec95, Chapter 20] or [Jec02, Chapter 33] for a broader reference.
Martin [Mar75] proved that the games are determined if W is a Borel set.

It is not difficult to see that for every i > 0, the statement

“every Gale-Stewart game with a winning condition in Σ1
i is determined” (1)

can be formalised as a sentence ϕi
det of projective mso on 2≤ω, see Appendix A.3.

As we show below, the ability to formalise determinacy of Gale-Stewart games
with winning conditions in Σ1

1 already indicates that it is unlikely that projec-
tive mso on 2≤ω is decidable.

Indeed, suppose that there is an algorithm P deciding the projective mso
theory of 2≤ω with a correctness proof in zfc. Note that by Lemma 2.4, this
would be the case if there was an algorithm deciding the mso+u theory of 2∗

with a correctness proof in zfc. Run the algorithm on ϕ1
det obtaining an answer,

either “yes” or “no”. The algorithm together with its proof of correctness and
the run on ϕ1

det form a proof in zfc resolving Statement (1) for i = 1. The
determinacy of all Σ1

1 games cannot be proved in zfc, because it does not hold
if V=L, see [Jec02, Corollary 25.37 and Section 33.9], and therefore P must
answer “no” given input ϕ1

det.
This means that a proof of correctness for P would imply a zfc proof that

Statement (1) is false for i = 1. Such a possibility is considered very unlikely
by set theorists, see [FFMS00] for a discussion of plausible axioms extending
the standard set of zfc axioms. A similar example regarding mso(R) and the
Continuum Hypothesis was provided in [She75].

3 Undecidability of projective mso on 2ω

In this section we show that projective mso is undecidable already on 2ω with
the lexicographic order. From the discussion in Example 2.2 it follows that the
projective mso theory of 2ω reduces to the projective mso theory of 2≤ω. There-
fore, the undecidability result for 2ω is stronger than for 2≤ω, in particular it
implies the undecidability result for mso+u from Theorem 1.1.

Theorem 3.1. Assume that there is a projective well-ordering of 2ω of type ω1.
Then the projective mso theory of 2ω is undecidable.

The proof of Theorem 3.1 is a minor adaptation of Shelah’s proof [She75] that,
assuming the Continuum Hypothesis, the mso theory of 2ω is undecidable. In
fact, Shelah already observed that such an adaptation is possible, in the following
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remark on p. 410: “Aside from countable sets, we can use only a set constructible
from any well-ordering of the reals.” To make the paper self-contained, we include
a proof of Theorem 3.1.

Proof strategy. We use the name ∀∗∃∗ sentence for a sentence of first-order
logic in the prenex normal form that has a ∀∗∃∗ quantification pattern. The
vocabulary of graphs is defined to be the vocabulary with one binary predicate
E(x, y). Finally, an equality-free formula is one that does not use equality. The
proof is by a reduction from the following satisfiability problem:

– Input. An equality-free ∀∗∃∗ sentence over the vocabulary of graphs.

– Question. Is the sentence true in some undirected simple graph?

The above problem is undecidable by Theorem 1 in Section 9 of [Gur80].

Reducing from the above problem is one of the main differences between our
proof and Shelah’s proof, which uses a reduction from the first-order theory of
arithmetic (N,+, ∗). The other main difference is that we introduce two defini-
tions, which we call modal graphs and Shelah graphs, which are only implicit
in Shelah’s proof. Our intention behind these definitions is to give the reader a
better intuition of what exactly is being coded into the mso theory of 2ω.

3.1 Modal graphs

Instead of encoding undirected simple graphs in projective mso, it will be more
convenient to encode a less rigid structure, which we call a modal graph1. A
modal graph consists of

– a partially ordered set of worlds with a least element;

– for every world I a set of local vertices2 VI ;

– for every world I a set of local edges EI ⊆ VI × VI

subject to the monotonicity property that VI ⊆ VJ and EI ⊆ EJ holds for every
worlds I ≤ J . Furthermore, for every I the local edges EI are a symmetric
irreflexive relation, i.e. modal graphs are simple and undirected.

We use first-order logic to describe properties of modal graphs, with the
semantics relation denoted by

G, I, val |= ϕ, (2)

where ϕ is a formula of first-order logic, G is a modal graph, I is a world in the
modal graph, and val is a valuation that maps the free variables of ϕ to the local

1 Another take on modality is presented in [GS82] using the language of forcing.
2 We will only construct graphs where every world has the same local vertices, but we

give the more general definition to match Kripke models for intuitionistic logic.
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vertices VI of the world I. The definition is by induction on the formula:

G, I, val |= E(x, y) iff (val(x), val(y)) ∈ EI

G, I, val |= ϕ ∧ ψ iff G, I, val |= ϕ and G, I, val |= ψ
G, I, val |= ϕ ∨ ψ iff G, I, val |= ϕ or G, I, val |= ψ
G, I, val |= ¬ϕ iff G, J, val 6|= ϕ for every J ≥ I
G, I, val |= ∃x ϕ iff G, J, val[x→ v] |= ϕ for some J ≥ I and v ∈ VJ
G, I, val |= ∀x ϕ iff G, J, val[x→ v] |= ϕ for every J ≥ I and v ∈ VJ

The definition above is almost the same as Kripke’s semantics for intuitionistic
logic [Kri65]. The only difference is in the ∃ quantifier: Kripke requires the world
J to be equal to I. We say that a sentence (i.e. a formula without free variables)
is satisfied in a modal graph if (2) holds with I being the least world and val
being the empty valuation.

Example 3.2. A modal graph with one world is the same thing as an undirected
simple graph. In this case, the standard semantics of first-order logic coincide
with the semantics on modal graphs.

Example 3.3. Modal graphs satisfy more sentences of first-order logic than undi-
rected simple graphs. In particular, if two existentially quantified sentences are
satisfied in (possibly different) modal graphs, then their conjunction is also satis-
fied in the modal graph obtained by joining the two modal graphs by a common
least world where the are no local edges.

The following lemma shows that for ∀∗∃∗-sentences, the answers are the same
for the satisfiability problem in modal graphs and the satisfiability problem in
simple undirected graphs. The same lemma would hold for directed graphs, and
also for vocabularies with more predicates.

Lemma 3.4. For every ∀∗∃∗ sentence η over the vocabulary of graphs, η is
satisfied in some undirected simple graph if and only if it is satisfied in some
modal graph.

Proof. The left-to-right implication is true for all sentences, not just ∀∗∃∗ sen-
tences, and follows from Example 3.2.

For the right-to-left implication, consider a ∀∗∃∗ sentence

η = ∀x1, . . . , xk. ∃xk+1, . . . , xn. α

where α is quantifier-free. For directed graphs G and H, we say that H is an
η-extension of G if G is an induced subgraph of H, and for every valuation of
the universally quantified variables of η that uses only vertices of G, there is a
valuation of the existentially quantified variables of η which makes the formula
α true, but possibly uses vertices from H.

Suppose that G is a modal graph. For a world I and a subset V of the local
vertices VI , define GI,V to be the undirected simple graph where the vertices
are V and the edges are local edges EI restricted to V × V . By monotonicity
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of local edges, the set of edges in GI,V grows or stays equal as I grows. We say
that GI,V is stable if GI,V = GJ,V holds for every J ≥ I. The key properties of
being stable are:

1. If GI,V is stable then for every valuation val : {x1, . . . , xn} → V ,

G, I, val |= α iff GI,V , val |= α.

In the equivalence above, the left side talks about semantics in modal graphs
and the right side talks about semantics in simple undirected graphs.

2. For every world I and finite V ⊆ VI , there exists a world J ≥ I such that
GI,V is stable;

3. If I ≤ J are worlds and V ⊆ W are such that GI,V and GJ,W are stable,
then GI,V is an induced subgraph of GJ,W .

Suppose that η is satisfied in G.

Claim. There exists a sequence of worlds I1 ≤ I2 ≤ . . . and a sequence V1 ⊆
V2 ⊆ · · · of finite sets of vertices such that GIi,Vi

is stable and η-extended by
GIi+1,Vi+1

for every i.

This claim proves the lemma, since the limit, i.e. union, of the graphs GIi,Vi

is a simple undirected graph that satisfies η.

Proof (of the claim). The sequence is constructed by induction; we only show
the induction step. Suppose that Ii and Vi have already been defined. Let Γi be
the finite set of valuations from the universally quantified variables x1, . . . , xk
to the vertices Vi. Repeatedly using the assumption that G satisfies η for every
valuation in Γi, one shows that there exists a world J ≥ I such that every
valuation val ∈ Γi extends to a valuation

val′ : {x1, . . . , xn} → VJ such that G, J, val′ |= α.

Define Vi+1 ⊆ VJ to be the finite set of vertices that are used by valuations
of the form val′ with val ranging over elements of Γi. Define Ii+1 ≥ Ii to be
the world, which exists by property 2 of stability, such that GIi+1,Vi+1

is stable.
For quantifier-free formulas, the semantics in modal graphs are preserved when
going into bigger worlds, and therefore

G, Ii+1, val
′ |= α

holds for every val ∈ Γi. By property 1 of stability, it follows that

GIi+1,Vi+1 , val
′ |= α.

Together with property 3 of stability, this implies that GIi,Vi
is η-extended by

GIi+1,Ii+1
. ut

ut
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3.2 Coding a modal graph in 2ω

In this section, we describe how a modal graph can be coded in 2ω. We use
the name interval for a subset of 2ω which consists of all branches that are
lexicographically between some two distinct branches. Intervals defined this way
are homeomorphic with 2ω. Intervals are denoted I, J,K.

Define a Shelah graph to be two families V, E of subsets of 2ω such that
every set in V is dense. For a Shelah graph, define its associated modal graph as
follows. The worlds are the intervals in 2ω, ordered by the opposite of inclusion,
in particular the least world is the whole space 2ω. The local vertices do not
depend on the worlds: for every interval I, the local vertices VI are are V (in
particular a vertex is a subset of 2ω). For an interval I and V,W ∈ V, the local
edge set EI contains (V,W ) if and only if

I ∩ V ∩W = ∅ (3)

I ∩ (V ∪W ) = I ∩ E for some E ∈ E . (4)

It is easy to see that EI ⊆ EJ when interval J is included in interval I. Since
worlds are ordered by the opposite of inclusion, this means that I ≤ J implies
EI ⊆ EJ . Every local edge set is symmetric because it is defined in terms of union
and intersection. Every local edge is irreflexive because (3) implies V 6= W (here
we use density, since the dense sets V,W must have nonempty intersections with
I). In other words the associated modal graph is a modal graph.

For a sentence ϕ of mso2, and families V, E of subsets in 2ω, we write

2ω,V, E |= ϕ

if ϕ holds, with the quantifiers ∃1X and ∀1X interpreted to range over sets in V,
and the quantifiers ∃2X and ∀2X interpreted to range over sets in E . By using
logic to formalise the definition of a Shelah graph, its associated modal graph,
and the semantics of first-order logic on modal graphs, we get the following
lemma.

Lemma 3.5. For every sentence η of first-order logic over the vocabulary of
graphs, one can compute a sentence η̂ of mso2 such that

2ω,V, E |= η̂

if and only if (V, E) is a Shelah graph whose associated modal graph satisfies η.

The general idea in the undecidability result is to use η̂ from the above
lemma. The main problem is that a projective mso sentence cannot begin saying
“there exists a Shelah graph”, because a Shelah graph is described by an infinite
(even uncountable) family of subsets of 2ω. The solution to this problem, and
the technical heart of the undecidability proof, is Proposition 3.6 below, which
shows how to describe the infinite families (V, E) by using just four sets. The
corresponding part in Shelah’s paper [She75] consists of Lemmas 7.6–7.9.
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Proposition 3.6. Assume that there exists a well-ordering of 2ω of type ω1

which belongs to ∆1
k(2ω × 2ω) for some k.

Then there is a formula ϕelem(V,Q, S) of projective mso on 2ω with the
following property. If G is a countable undirected simple graph, then there are
sets

QV , QE , SV , SE ⊆ 2ω, (5)

such that the families

V = {V ⊆ 2ω : ϕelem(V,QV , SV )}, E = {E ⊆ 2ω : ϕelem(E,QE , SE)} (6)

are a Shelah graph whose associated modal graph satisfies the same equality-free
∀∗∃∗ sentences as G.

Furthermore, the formula ϕelem quantifies only over Σ1
1 sets; the sets from (5)

are in Σ1
k+4, and the families from (6) contain only countable sets.

We now use the proposition and the previous results to show the undecid-
ability of projective mso from Theorem 3.1.

Corollary 3.7. Assume that there exists a projective well-ordering of 2ω of
type ω1. Let η be an equality-free ∀∗∃∗ sentence over the vocabulary of graphs.
Then the following conditions are equivalent:

1. η is true in some undirected simple graph, with standard semantics of logic.
2. There are sets as in (5) such that the families V, E from (6) satisfy

2ω,V, E |= η̂

where η̂ is the sentence defined in Lemma 3.5.
3. η is true in some modal graph, with semantics of logic on modal graphs.

Proof. By the Löwenheim-Skolem theorem, if η is true in some undirected simple
graph, then it is true in some countable undirected simple graph. Therefore, the
implication 1 ⇒ 2 follows from Proposition 3.6 and Lemma 3.5.

The implication 2 ⇒ 3 follows from Lemma 3.5, which implies that η is true
in some modal graph, namely the modal graph associated to the Shelah graph
given by formula (6). The implication 3 ⇒ 1 is the right-to-left implication in
Lemma 3.4. ut

Proof (of Theorem 3.1). Condition 2 in the above corollary can be formalised
by the formula of projective mso on 2ω

∃SV , QV , SE , QE ∈ Σ1
k+4. η̃

where k is the natural number from Proposition 3.6 and η̃ is the same as η̂, except
that instead of quantifying over a set V ∈ V, it quantifies over a countable set
V satisfying ϕelem(V,QV , SV ); likewise for quantifying over E ∈ E .

We have thus shown a reduction from the undecidable satisfiability problem
for equality-free ∀∗∃∗ sentences over undirected simple graphs to the theory of
projective mso on 2ω. Therefore, the latter is undecidable. ut
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4 Conclusions

We have shown that the mso+u theory of 2∗ is undecidable, conditional on the
existence of a projective well-ordering of 2ω of type ω1. Apart from the obvious
question about unconditional undecidability, a natural question is about the
decidability of mso+u on infinite words: is the mso+u theory of the natural
numbers with successor decidable? The methods used in this paper are strongly
reliant on trees, so an undecidability proof would need new ideas to be adapted
to the word case. Evidence for undecidability is that the topological hardness of
mso+u on words is shown in [HS12] by encoding trees in words.

An interesting related problem [She75, Conjecture 7a] is the decidability of
mso[Borel] on 2≤ω, i.e. the logic defined analogously to projective mso except,
that set quantification is over Borel sets only.
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