1-bounded TWA Cannot Be Determinized

Mikotaj Bojaniczyk*

Warsaw University

Abstract. Tree-walking automata are a natural sequential model
for recognizing tree languages which is closely connected to XML.
Two long standing conjectures say TWA cannot recognize all reg-
ular languages and that deterministic TWA are weaker than non-
deterministic TWA. We consider a weaker model, 1-TWA, of tree
walking automata that can make only one pass through a tree. We
show that deterministic 1-TWA are weaker than 1-TWA. We also
show a very simple language not recognized by 1-TWA.

1 Introduction

Tree-walking Automata (TWA for short) are a natural sequential model for
recognizing tree languages. Originally introduced by Aho and Ullman in 1971
[1], they have of late undergone something of a revival in a research program
initiated by Engelfriet et al. [4, 5]. TWA have also been gathering interest thanks
to the advent of XML (see [7,2], or the survey [8]).

A TWA is similar to a finite word automaton. In any given moment it is
positioned in a single vertex of the tree assuming one of a finite number of
states. Based on this state and the label together with some other information
about the current vertex, the automaton can change its state and move to some
neighboring vertex.

The exact nature of this other information varies from definition to definition.
Kamimura and Slutzki [6] showed that if this does not include the child number
of the current vertex, it cannot even search the tree in a systematic way, such
as doing a depth-first search. The now standard model assumes a TWA knows
whether the current vertex is the root, a leaf, a left son or a right son.

Albeit blessed with a long history, very little is known about TWA. One
can easily prove that TWA-recognizable tree languages are regular, i. e. can be
recognized by any one of several equivalent models of (branching) tree automata.
However, many of the most fundamental questions, as posed in [8], still remain
open:

1. Do TWA capture the regular tree languages?
2. Are deterministic TWA as expressive as TWA?

* This research project was supported by Komitet Badai Naukowych, grant 4 T11C
042 25 for the years 2003-2006 and the European Community Research Training
Network “Games and Automata for Synthesis and Validation”

3. Are TWA closed under complementation?

The only progress made to date regarding these questions was by Neven and
Schwentick, who in [9] presented a regular language that cannot be recognized
by any one bounded TWA (1-TWA for short), i. e. one that traverses every edge
at most once in each direction.

Our main contribution is a proof that one bounded deterministic TWA (1-
DTWA) do not recognize the same languages as 1-TWA. The language we use
is the set Ly of {a, b, c}-labeled trees in which there exists an occurrence of the
letter b below some occurrence of the letter a (or, equivalently, denoted by the
expression /a//b in XPath). Intuitively, we show that a 1-DTWA cannot keep
track of whether or not it is below some a vertex.

We are able to show this directly, using monoid combinatorics, only if A is a
depth-first search (DFS) automaton. A DFS automaton is a 1-DTWA that visits
vertices according to the lexicographical ordering. Such an automaton can, for
instance, recognize the set of {A,V,0,1}-labeled trees that correspond to well-
formed boolean expressions evaluating to 1.

After showing that no DFS automaton can recognize L;, we prove that DFS-
like behavior can be forced in an arbitrary 1-DTWA. Thus we obtain:

Theorem 1
No deterministic 1-TWA recognizes L1, but there is a nondeterministic 1-TWA
recognizing L .

Next we consider the language L, of {a, b, c}-labeled trees where below some
occurrence of a there exist two occurrences of b which are not on the same
branch. Using similar monoid combinatorics as in the case of L;, we show that
Ly cannot be recognized by any 1-TWA. This is similar to the result of Neven
and Schwentick mentioned above.

We think, however, that our example has two relative merits: first, the proof
is quite straightforward, and second, our language Lo has very simple logical
properties — for instance it can be defined using a CTL [3] formula. Thus proving
our conjecture that Lo is not recognized by arbitrary tree walking automata
would show how severely limited TWA are.

Our language L; on the one hand, and the aforementioned language of Neven
and Schwentick as well as our Ly on the other, show that the following inequal-
ities hold (where REG is the class of regular languages):

1-DTWA C 1-TWA C REG

2 Tree Walking Automata

In the paper we will be dealing with finite, binary, labeled trees. Let A be a
finite prefix-closed subset of {0,1}* such that v-0 € A & v-1 € A and let ¥
be some finite set. A X-tree is any function t : A — Y. The domain dom(t) of
the tree t is the set A. A wvertez of t is any element v € dom(t). For vertices we

use the prefix ordering: v < w if w = v - v’ for some v' € X*. We denote the
set of X-labeled trees by trees(X). Given t,t' € trees(X) and o € X, let (¢,0,t")
denote the tree that has o in the root, whose left subtree is ¢ and whose right
subtree is t'.

A tree with a hole t[] is a tree t with some distinguished leaf v € dom().
Given another tree s, the tree t[s] obtained from t by substituting the tree s for
the leaf v. We distinguish the tree with a hole [], which has the hole in the root.
Similarly we define a tree with two holes t[,]; we assume the first hole is to the
left of the second one.

A tree walking automaton is a tuple (@, X, 0, qr, F'), where @ is the set of
states, X is the alphabet, § is the transition function, qr € Q the initial state and
F C @ the set of accepting states. The function 9 is of the form:

d: {*L7T07T17J-} X Q x X — P(Q X {T7~L07~L1})

We will describe the run of A over some X-labeled tree. The automaton starts
in the root of the tree assuming the initial state. It then walks around the tree,
choosing nondeterministically a direction to move based on the current state,
the label in the current vertex and information on what it did in the previous
move. This information can assume several values: | if it entered the current
vertex from its parent, T¢ if it entered from a left son, 1y if it entered from the
right son and L if there was an error in the previous move.

Based on this information, A decides whether it wants to move to the ancestor
by choosing 1; or down into the left or right son by choosing | or }1 respectively.
The previously mentioned error can occur if the automaton tried to move up in
the root, or tried to move down in a leaf. In these cases, the error L is reported
and the automaton does not move. By convention, we assume that in the initial
configuration, A remembers that in the previous move an error occurred. A run
is accepting if A enters an accepting state. A tree t is accepted by A if there is
an accepting run over ¢.

A deterministic tree walking automaton, DTWA for short, is defined like a
nondeterministic TWA, except that ¢ returns only one result:

6:{~L7T05T17J-} XQ XE_)QX {TJ*LOJ‘Ll}

We say a TWA (resp. DTWA) is 1-bounded if it traverses every edge at most once
in each direction in every possible run. Let 1-TWA be the class of 1-bounded
nondeterministic TWA and let 1-DTWA be the class of 1-bounded DTWA.

Those familiar with TWA will notice that our definition is slightly nonstan-
dard. Normally, a TWA decides what move to make based not on the type
{},%0,%0, L} of the previous move, but on information whether the vertex is:
the root, a left son, a right son or a leaf. It is an easy exercise to show that these
formalisms are equivalent. However, we choose the history-based approach so
that we can talk about runs on a subtree s of a larger tree ¢ without specifying
whether s is rooted as a left or right son in ¢.

2.1 Finite Monoid Equations

Let Var = {z,y, 2, ...} be an infinite set of variables. Given a finite set X disjoint
with Var, a X -equation is an expression of the form w = w', where w,w' € (X'U
Var)*. A function v : Var — X* is called a valuation. Let v* : (VarUX)* — X* be
the function substituting the v(x) for every variable z. Given a homomorphism
h : X* — M from the free monoid X* into some finite monoid M, we say v
satisfies (h,w = w') if h(v*(w)) = h(v*(w")).

A set E of Y-equations is finitely solvable if for every finite monoid M and
every homomorphism h : X* — M, there is a valuation v such that v satisfies
(h,e) forall e € E. A constrained set of equations is a set of equations augmented
with constraints on the valuation v. In this paper we consider constraints of the
form o € v(z) or o & v(x) stating what letters o € X must or cannot appear in

v(zx).

Example 1. For every alphabet X and any satisfiable set of constraints, the equa-
tion & = zx is finitely solvable. This follows from the following Lemma:

Lemma 1. In every finite monoid M there is some n € N such that for all
elements a of M, a™ = a™ - a™.

Proof
Since M is finite, a’ = a’t* for some j, k < |M|. But then a™ = a™** for all
m > j,1 > 0. In particular alM' = a/M/" . g/M[!, O

Ezample 2. The following set of constrained {a,0,1}-equations is finitely solv-
able:

z-0-yo=a'-0-yq

z-l-yy=x-1-y

acv(r) adv(x)
Let h:{0,1,a}* — M be an arbitrary homomorphism and let n be the constant
from Lemma 1 appropriate to the monoid M. Let ' =1-0" anda=1-a-0".

Given a word o, let 0= - b be the word b’ such that o - b’ = b.We define the
valuation v as follows:

v(z) =d -a v(z') =d v(yo) = 0" 1.a" v(y) =171.a"

We must show that:

h(a'-a"™-0"-a") = h(a' - 0™ - a™)
h(a'-a™-a™) = h(a' - a™)

These equations are true because, by Lemma 1, h(a'-0") = h(a'), h(a-0") = h(a),
and h(a™) = h(a™ - a™).

3 Separating 1-DTWA from TWA

In this and the following section we will define two languages L; and L, we
conjecture to separate the DTWA from TWA and TWA from regular languages
respectively. The first language, L; is the following set of {a, b, c}-trees:

Ly ={t:3z,y € dom(?). t(z) =aAt(y) =bAz <y}

We are only able to prove that L; cannot be recognized by any 1-DTWA. The
proof is split into two parts. First we show that no deterministic automaton that
does a depth-first search of the tree can recognize L;. Then we generalize this
result to arbitrary 1-DTWA.

3.1 A DFS Automaton Cannot Recognize L,

A DFS automaton is a 1-DTWA that in every run visits v before w iff v is
lexicographically before w. Given a DFS automaton A, we will prepare two
trees, t € Ly and t' € Ly such that A cannot distinguish between them. In these
trees we distinguish several nodes: wy, w2, w3 € dom(t) and wy, wh, wh € dom(t').
We then claim that they are corresponding in the sense that they have similar
histories — for instance the state assumed by A the second time it visits ws is
the same as the state assumed in w) in the corresponding visit. Finally, we show
that A cannot distinguish the paths that lead from w3 to the root in ¢ and from
w} to the root in t' respectively, thus showing that A either accepts both trees
or rejects both trees.

The trees t and ¢’ will have essentially very little branching — in fact they have
only one “real” branching point each, apart from which we use trees obtained via
an encoding operation, which given a word a € {0,1,a}*, produces a tree with
a hole af] (see Fig. 1 for the definition of af]).

l=0 Oaf=(afl,c,e) laf]=(c,c,af) aof] =(afla,c)

Fig. 1. The operation assigning af] to «

Let a, o/, 3,8 ,71,72 € {0,1,a}* be some words which we will specify later
by solving certain equations. We only require that a contains the letter a and
o', 71 do not. The trees t and t' are defined as follows (see Fig. 2 for a graphic
representation):

tr=ml(b,e,ple])] t=al(flc],c,t1)] ' =[(Be] ¢, t1)]

/ '\ / '\
8 n B n
I | I |
w —>0C © w—0>0 ©
/ \ / \

O ON-
I I
@ - W3 @ - wg
Fig. 2. The trees t and t'

By assumption on «a, o' and 71, we have t € Ly and t' ¢ L;. We will show
that for every DFS automaton 4, we can find words a, o/, 8, 8,71, 72 such that
A cannot distinguish between ¢ and ¢'.

A partial state transformation is any partial function from @ to Q. For every
word a € {0,1,a}* we will define two partial state transformations f! and f}.
The intuition behind this being that f assigns to a state ¢ the state f1 that A
will end in if it starts in the hole of af] in state ¢ and moves toward the root
continuing the depth-first search. If in this run the automaton does not behave
like a DFS automaton — it wants to visit something twice, for instance — f!(q)
is undefined. A similar intuition goes for f}(q), except that we start in the root
and end up in the hole this time.

We will only define f1(q), leaving the reader to define f, f1, f%, f3, f{ anal-
ogously. Let ¢1,¢2, g3, qa be states satisfying the following equations:

(qlnlfl) = 6(T07aa q) (q2a~l/0) = 5(~LacaQI)
(q37T) = 5(J—>C;CI2) (q47T) = 6(Tlaa7 qS)

If such states cannot be found, this means that A does not behave like a DFS
automaton and fI(q) is undefined, otherwise fl(q) = q4. We extend fT, f+ from
letters to arbitrary words in {0,1,a}* in the obvious fashion:

fleg=rflofl fra="r5ofk

Consider the run of A on the tree t. Let ¢; be the state of A assumed when
first arriving in the vertex ws (see Fig. 2). Let g2 be the state assumed when
coming back from the left son to wy; g3 when first arriving at ws; and, finally,
let g4 be the state upon coming back to the root upon reading the whole tree.

Analogously we define the states g1, g3, g%, g}, which describe the run on the tree
t'. An easy analysis shows that if .4 is a DFS automaton then these states satisfy
the following equations:

@ = fiosl@) ¢ = Fio.p (@) (1)
® = fl5(gc(a1)) & = f3.5(9¢(d)) (2)
a3 = g(g2) a5 = 9(a2)

G = f2-1-71-1-72 (g3) q = flr.l.,n.l.,m (a5) 3)

where

— qr is the initial state of A

— g is the state transformation induced by going down the branch ~,, into the
letter b, back up one edge, and down the branch -,

— gc is the state transformation induced by entering a c leaf and leaving it

Obviously, if we can prove that the corresponding fT, f+ functions in the above
equations are equal, then we will have proven that ¢4 = ¢j and, consequently,
that A does not distinguish between ¢t and t'. Using similar techniques as in
Example 2, we can show that the following set of {a, 0, 1}-equations is finitely
solvable:

z-0-y = 2/-0-y (e1)

0-y = 0-9 (e2)

T-1-21-1-20 = 2/ -1-21-1-2 (e3)
a€v(x) a¢v(z') constraints

Let Mg be the monoid whose elements are partial state transformations and the
monoid operation is composition. Given an arbitrary monoid M, let M denote
the monoid whose operation - ; is defined:

a-;b=b-pma

The function h associating with each word « the functions 1, f4 is a homomor-
phism from {a,0,1}* into the monoid Mg x MQ. Let v be a valuation satisfying
(h,e1), (h,e2) and (h,e3), which exists by the finite solvability of the above
equations. Then the equations (1), (2) and (3) will be satisfied if we set:

a=v(®) o=v) B=vl) P=vl) mn=vEn) r=vi)

3.2 From DFS Automata to Arbitrary 1-DTWA

We fix a 1-DTWA A for this section. We will show that 4 cannot recognize L
by reducing the problem to DFS automata. The reduction is accomplished by
replacing in ¢t and t' every o-labeled (for o € {a, c¢}) inner node with a tree s,|,],
which has the property that if 4 first visits the left son in the root of s,, then
it will first visit the left son in both of the holes.

Lemma 2. If L(A) = L, then A must visit every node in a tree outside L.

Proof

Assume A does not visit a node v in the tree s ¢ L. Let s’ be some tree in
L. Since s[v := s'] € Ly, the desired contradiction comes from the fact that A
accepts s iff A accepts s[v := §']. O

We say q is an entering state if in some run there is a vertex v such that
when A first visits v, state ¢ is assumed. A state is clean entering if one of the
runs in question is over a tree outside L;. It is c-clean entering if additionally
all vertices betweend v and the root are labeled by c. Let o € {a,c}. A tree ¢ is
(g, 0)-clean if either:

— ¢ is c-clean entering and (t,0,t) & Lq;
— ¢ is merely clean entering and (¢,a,t) & Ly

02(nt+n)—1 o 12(nl4+n)-1

() ()
o e o o 12(n!+n)+1
(© © /

02(n!+n)+1
\ (2) ()
(< © OBy O
©

Fig. 3. The tree s,

We are now going to define for o € {a,c} a tree s, that will allow us to
simulate DFS automaton behavior in an arbitrary 1-DTWA. Let n = |Q]. We
define the tree s, as follows (see Fig. 3):

dom(s,) = {0:i<2(n!+n)}u{l?:i<2(n!+n)}U
U{0t-1:i<2(n!+n)}U{1-0:i <2(n!+n)}
w= {° if v = 0%+1 or v = 12"+ for some i
So0) = c otherwise

Let sq[,] be a tree with two holes which is obtained from s, by placing the
first hole instead of the vertex 0?™ and placing the second hole instead of the
vertex 12,

Lemma 3. Letq be a clean entering state, o € {a,c}, andlett,t' € trees({a,b,c})
be such that t(g) = t'(e) = ¢ and t is (g,0)-clean. If A first visits the left son in
the root of s, then in the run on s, [t,t'], A first visits the left son in the vertices
02n! and 1211!_

Proof

Let ¢ be a clean entering state and assume that §({,¢c,q) = (¢', o), i. e. A first
goes into the left subtree. Consider now the run p on s, that starts in this state
q. First note that, in accordance with Lemma 2, this run must visit every vertex
of the tree.

For i € {0,...,n! + n}, let ¢' be the state assumed in 0% after going up
from 0%*!. By a counting argument, for some j < n, ¢"t/ = ¢™. But then
g" = ¢ = ... = ¢°. Since A must visit all the tree and the left subtree of the
root ¢ was visited first, 6(1o,¢™,c) = 6(10,4° ¢) = (¢', 1) for some ¢’ € Q. But
this means that the left son of 02" was visited before the right son. By a similar
reasoning, we show that the left son of 12® was visited before the right son.

Finally, to finish the proof of the Lemma, we notice that the decision to first
visit the left subtree in 0™ is made before visiting the actual subtree. This means
that the result stays the same no matter what tree we substitute under the vertex
02", as long as this tree has c in the root. A similar argument can be made for
12" however this time we must use the assumption that the tree substituted
under 02™ was (g, o)-clean, since otherwise we could not have assumed in the
proof that A needs to visit the whole tree. |

Lemma 4. A does not recognize L.

Proof

Without loss of generality, we assume that in the root and initial state qr,
A first visits the left subtree. For every tree s € trees{a,b,c} that has inner
nodes labeled only by a,c, we define a tree § € trees({a,b,c}) by induction.
If s = (sg,0,51), then § = s4[50, 51]; otherwise dom(s) = {e} and then § = s.
Given v € dom(s), let & € dom(3) be the vertex whose subtree is s|,. We will
prove that A does not distinguish between ¢ and #' — where the trees ¢ and ¢’ are
the ones discussed in the previous section.

For s € {t,t'}, we call a vertex v s-main, if v = & for some w € dom(s).
Since # ¢ Ly, the assumptions of Lemma 3 apply and A behaves like a DFS
automaton in its entire run over #', i. e. first visits the left son before the right
son in every t'-main vertex. By a similar reasoning, in the run on £, A behaves
like a DFS automaton before entering the right son of ;. By the results on
DFS automata, the states assumed by A before entering the right son of «w; and
before entering the right son of w) are the same. Since the right subtrees of
and w| are the same, the vertices w3 and u% are reached in the same state.

In order not to violate the 1-bounded condition, 4 must now go back to the
root without visiting the left son of any main vertex. Note that here we use
the fact that no run of a 1-bounded TWA can traverse an edge twice in the
same direction. Thus, by the results on DFS automata, A does not distinguish
between # and ¢'. O

Theorem 1
No deterministic 1-TWA recognizes Ly, but there is a nondeterministic 1-TWA
recognizing L .

Proof

This follows immediately from Lemma 4 and the fact L; can be easily recognized
by a 1-TWA that guesses some position labeled by a and then some deeper
position labeled by b. |

In fact, we conjecture:

Congjecture 1. No deterministic TWA recognizes L;. Consequently, deterministic
TWA recognize fewer languages than their nondeterministic counterparts.

4 Separating 1-TWA from REG

Consider the regular language L, C trees({a,b,c}) consisting of trees where
there exist two incomparable occurrences of b below some occurrence of a.

Congecture 2. No TWA recognizes Lo

From a logical point of view, this language is rather simple, as testified by:

— In XPath, L is the set of trees satisfying the query fa[/[*[1]/b][*[2]/b]];

— An obvious TWA that uses conjunction can recognize Lo;

— In CTL over ordered trees, Lo is the set of trees satisfying (0 and 1 stand
for child number tests) EF[a A EX(0 A EFb) A EX(1 A EFb)]

Consequently, proving Conjecture 2 would show that TWA do not subsume
the above formalisms. Unfortunately, we can only prove that no 1-TWA can
recognize Lo:

| |
a o
[I
@— w ©@—
/ N\ / N\
Bo B Bo B

| | | |
=0 ®O-w u =0 @

Fig. 4. The trees t and ¢’

Lemma 5. No 1-TWA recognizes L.

Proof (sketch)

Let A be some 1-TWA. We take some words a, ', 8o, 81 € {a,0,1}* such that
a € a a¢a and define the trees t,t' as in Fig. 4. By assumption on « and
o', we have t € Ly and t ¢ Ly. We will prove that — given a suitable choice of
a,a, Bo, B1 —if A accepts t then A accepts t'.

Since we are now dealing with nondeterministic automata, the state transfor-
mations will be replaced by arbitrary relations, which associate with a state all
the possible states reachable from it via a particular tree. Let Ng be the monoid
whose elements are binary relations over () and whose operation is the standard
composition of relations:

(.)€ RoS & 3¢"(¢,¢") e RA(¢",¢') € S

With each word y € {a,0,1}* we associate two relations R] and R}. Intuitively,
(¢,q") € RIY if there is a run that starts in g in the hole of 4[] and ends up in ¢'
in the root and a similar definition holds for R#. Since the function associating
these relations with a word is a homomorphism into the monoid Ng x Ng, we
can finish the proof by solving the following constrained equations:

z-0-yo=2"-0-yo
z-1-y1=2x'-1-1
acv(r) adv()

These are, of course, the equations from Example 2, and we know that they are
finitely solvable. This means that there are words a, o/, 3, 8’ such that:

(A) Rlog, =Rlhog Rios =Ruog (B)
(C) RT,lﬂl = Rl’-l-ﬁl RL.l.gl = Riq.gl (D)

a a

We use these words in the trees ¢ and ¢'. Consider an accepting run of A on
the tree t. Obviously, it must visit both ws and ws. Assume, without loss of
generality, that ws is reached before ws, in state ¢. Since in this run the right
son of wy was not visited, there is also a run over the tree a-0- fi[b] that
assumes state ¢ in the b node. By equation (B), there is a run over the tree
o' -0 - f1[b] that also assumes state ¢ in the b node.

Consider first the case when, in this second run, the right son of the vertex
corresponding to wj is visited. However, in the run over ¢, starting in state g
and vertex ws, the automaton goes up and then into the right son of w;. This
first case would then give us a run over o' - 0 - 8;[b] that violates the 1-bounded
condition. Here we use the fact that no run of a 1-bounded TWA can traverse
an edge twice in the same direction. Thus the second case must hold, i. e., in
the run over ' - 0 - 81[b] the right son of the vertex corresponding to wj is not
visited. But this shows that A can enter w) in state q.

In a similar manner we can copy the rest of the accepting run onto the tree
t', which shows that A4 cannot accept L. a

5 Concluding Remarks and Further Work

In this paper we have proved that 1-DTWA recognize fewer languages than
1-TWA, which in turn do not recognize all the regular languages. The result
about 1-DTWA is new and may be a first step toward proving the long standing
conjecture that DTWA do not recognize all languages recognized by TWA. The
second result is an improvement on a language of Neven and Schwentick, which
also separates 1-TWA from the regular languages.

The proofs of both our results require solving certain kinds of monoid equa-
tions. Apart from giving answers to the conjectures 1 and 2, a good topic for
further work is the question:

Is the finite solvability of (constrained) monoid equations decidable?

Apart from an independent interest, an answer to this question might be rele-
vant to further work on the expressive power of TWA. It seems plausible that
an attempt to continue the line of attack presented here might require solving
numerous and more complicated equations. An automatic procedure might then
come in handy; moreover techniques used in such a procedure might shed some
insight on the TWA.

Acknowledgments: T would like to take this opportunity to thank my supervisor
Igor Walukiewicz for his help in my research. Without his suggestions and our
countless discussions, I could not have written this paper.

References

1. A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Information
and Control, 19:439-475, 1971.

2. A. Briigemann-Klein and D. Wood. Caterpillars. a context specification technique.
Markup Languages, 2(1):81-106, 2000.

3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Logics of Programs: Workshop, volume 131
of LNCS, pages 52-71, 1981.

4. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In G. Paum
J. Karhumaki, H. Maurer and G. Rozenberg, editors, Jewels are forever, contri-
butions to Theoretical Computer Science in honor of Arto Salomaa, pages 72-83.
Springer-Verlag, 1999.

5. J. Engelfriet, H. J. Hoogeboom, and J.-P. van Best. Trips on trees. Acta Cybernetica,
14:51-64, 1999.

6. T. Kamimura and G. Slutzki. Parallel two-way automata on directed ordered acyclic
graphs. Information and Control, 49(1):10-51, 1981.

7. T. Milo, D. Suciu, and V. Vianu. Type-checking for XML transformers. In Proceed-
gins of the Nineteenth ACM Symposium on Principles of Database Systems, pages
11-22, 2000.

8. F. Neven. Automata, logic, and XML. In Julian C. Bradfield, editor, Computer
Science Logic, 16th International Workshop, 11th Annual Conference of the EACSL,
volume 2471 of LNCS, pages 2-26, 2002.

9. F. Neven and T. Schwentick. On the power of tree-walking automata. In Automata,
Languages and Programming, 27th International Colloquium, ICALP 2000, volume
1853 of LNCS, 2000.

Appendix

Lemma 6. The following set of {a,0,1}-equations is finitely solvable:
z-0-y=2-0-9
0-y=0-9
z-1-21-1-29=2"-1-27-1-29
acv(z) adv(a)

Proof
Let h:{0,1,a}* — M be an arbitrary homomorphism and let n be the constant
from Lemma 1 appropriate to the monoid M. Let:

a=1" b= (0b)" ¢ = (brab™)"

We will show that the following valuation v is a solution:

viz)=b-c v(iz')="b
v(y)=0"1-¢ v(y')=0"t-c-c
v(z)=171-a v(izg) =171 a-c

hb-c-a-a-¢)=h(b-a-a-c)

A simple verification employing Lemma 1 shows that these equations are true.
O

