1405.2234v1 [math.LO] 9 May 2014

arXiv

Decomposition Theorems and Model-Checking for
the Modal p-Calculus

Mikolaj Bojanczyk
University of Warsaw
bojan@mimuw.edu.pl

Abstract—We prove a general decomposition theo-
rem for the modal p-calculus L, in the spirit of Fe-
ferman and Vaught’s theorem for disjoint unions. In
particular, we show that if a structure (i.e., transition
system) is composed of two substructures M; and M:
plus edges from M; to M>, then the formulas true at
a node in M only depend on the formulas true in the
respective substructures in a sense made precise below.

As a consequence we show that the model-checking
problem for L, is fixed-parameter tractable (fpt)
on classes of structures of bounded Kelly-width or
bounded DAG-width. As far as we are aware, these are
the first fpt results for L, which do not follow from
embedding into monadic second-order logic.

1. Introduction

The modal p-calculus L, introduced by Dexter Kozen in
1983, is a well-known logic in the theory of verification
that encompasses many other modal logics. Among others,
propositional dynamic logic (PDL), linear time logic (LTL)
and the full branching time logic (CTL*) have embeddings
into L,,. See e.g. [4] for a survey of the p-calculus including
these results.

It seems that L, strikes a good balance between expres-
sivity and complexity. The computational complexity of
the model-checking problem, i.e., the problem of checking
whether a formula ¢ € L, is true at a node v of a structure
M (in this paper we use the term structure for transition
systems or Kripke structures) is of particular interest,
especially in the field of formal verification. The problem is
polynomial-time reducible to the problem of determining
the winner of a parity game, a certain kind of 2-player
game played on directed graphs, and most approaches for
analyzing the complexity of L, model-checking are based
on parity games.

The problem of determining the winner of a parity game
is in NP N coNP, and in fact it is even in UP N coUP [14].
Despite 30 years of research, the question whether parity
games can be decided in polynomial time is a long-standing
open problem in the theory of logics for verification.

As a precise analysis of the classical complexity of L,
model-checking remains elusive, we study the problem
within the framework of parameterized complexity the-
ory [7], [9]. In particular, we aim at algorithms verifying
whether a formula ¢ is true at a node v in a structure

Christoph Dittmann and Stephan Kreutzer

Technical University Berlin

{christoph.dittmann, stephan.kreutzer}@tu-berlin.de

M in time f(y) - |M|°, where f is a computable function
from formulas into the positive integers and c is a constant
independent of ¢. Computational problems that can be
solved in this way, i.e., in time f(k) - n¢, where n is the
size of input and k is a parameter of the input, a natural
number such as length or quantifier-depth of a formula,
are called fized-parameter tractable (fpt) and the class of
all fpt problems is denoted FPT.

The parameterized complexity of logics such as monadic
second-order logic (MSO) or first-order logic (FO) has been
well studied in the literature, especially in the context of
algorithmic meta-theorems. See e.g. [11] for a recent survey.
However, not much is known about the parameterized
complexity of L,. As every L,-formula can be translated
into an equivalent MSO formula, fpt results for MSO
immediately imply fpt results for L. As a consequence, L,
is fpt on classes of structures of bounded clique-width [6],
bi-rank-width [15] or tree-width [5]. However, besides these
results that follow from embedding into MSO, we are not
aware of any other tractable cases.

On the other hand, we know more about solving parity
games on restricted classes. One of the first results in
this direction was by Jan Obdrzédlek [18], who showed
that parity games of bounded tree-width can be solved in
polynomial time. This result was later extended to bounded
clique-width [19]. Since parity games are directed graphs,
it is natural to look for graph measures taking the direction
of edges into account. Such measures include directed path-
width [1], DAG-width [2], Kelly-width [12], directed tree-
width [13] and entanglement [3]. Classes of parity games
for which any of these measures is bounded can be solved
in polynomial time (see [2], [12], [3]), with the exception
of directed tree-width. Solving parity games in polynomial
time on directed tree-width is still an open problem.

A class of digraphs where the DAG- or Kelly-width
is bounded also has bounded directed tree-width. DAG-
width and Kelly-width are as yet uncomparable concepts.
However, any class of digraphs of bounded directed path-
width has bounded Kelly- and DAG-width, which implies
polynomial time solvability of parity games of bounded
directed path-width by the results cited above.

Our contributions. The aim of this paper is to de-
velop the logical and algorithmic tools for proving fixed-


mailto:bojan@mimuw.edu.pl
mailto:christoph.dittmann@tu-berlin.de
mailto:stephan.kreutzer@tu-berlin.de

parameter tractability of L,-model-checking on special
classes of structures such as classes of bounded Kelly-width.

Such classes already contain natural and interesting
examples of transition systems. However, we see our work
also as a first step in a more general program of showing
that L,-model-checking is fpt in general. For this, it is
easily seen that it suffices to solve the problem on planar
structures. We therefore aim, as a next step, to show
that it is fpt on classes of planar structures of bounded
directed tree-width. A general duality theorem [16] states
that if the directed tree-width is high, then the structure
contains a grid-like substructure. In the planar case, this
yields a natural decomposition of the structure into smaller
substructures which can possibly be exploited for solving
L,,-model-checking for structures of very high directed tree-
width. The techniques we develop in this paper are a first
step towards this goal and we believe that they will prove
useful for classes of structures beyond bounded Kelly-width
or bounded DAG-width.

Furthermore, besides the algorithmic applications, we
believe that the decomposition theorems we establish below
may be of independent interest.

Main contributions to logic of this paper. An important
logical tool in the analysis of the parameterized complexity
of model checking for FO or MSO are decomposition theo-
rems, also referred to as Feferman-Vaught style theorems
(see [17] for a comprehensive survey). Whereas for FO
and MSO a range of such theorems are known, much less
seems to be available for L,. In this paper we prove a
general decomposition theorem for L, that allows us to
compute the formulas true at a node in a structure from the
formulas true at the nodes in some induced substructures.
Our theorem is similar in spirit to the theorem by Feferman
and Vaught on disjoint unions [8]. As far as we are aware,
no such theorem was known for L, prior to our work.

The first step for such a theorem is finding a useful notion
for the “depth” of a formula, so that up to equivalence
there are only finitely many formulas up to a given depth,
and that the types of the nodes in the full structure
can be computed from the types of the nodes in some
induced substructures. We propose the notion of y-depth
that satisfies both constraints.

In this paper we study the construction of a structure M
from two structures M; and My where M is defined as the
union of M; and M, plus an arbitrary set of edges from
M, to Ms. We call the pair (M;, Ms) a directed separation
of M and refer to the intersection M; N M as the interface.
See Definition 2.4 for details. Let (M7, M3) and (M, M)
be two directed separations with interface X as defined
above. Note that both have the same left-hand side M;. For
a given u-depth §, we define a notion of d-equivalence on
these separations. The main ingredient of d-equivalence is
that My and M) realize the same L,-types up to p-depth
6, when the interface nodes are indicated with special
predicates. See Definition 2.5 for details.

Theorem 1.1 (Theorem 2.6) Let § be a u-depth, and
let M = (M, Ms), M’ = (M, M}) be §-equivalent directed
separations. Then for every node in My, the set of formulas
of depth 0 that it satisfies is the same in M and in M'.

The theorem, apart from its purely logical appeal, also
has applications for L,-model checking. The notion of
equivalent structures (M;, Mz) and (M7, M) can also be
read in the way that, given a huge structure (M7, Ms), we
can replace My by a much smaller structure as long as it
realizes the same types up to a certain depth. This will be
the main tool in our algorithmic applications.

Applications to L,-model checking. Based on our decom-
position theorems above, we show that L,-model checking
is fpt on classes of structures of bounded Kelly-width or
bounded DAG-width, provided a decomposition is given
as part of the input.

Relation to other work. A natural idea for solving L,-
model-checking on a class C of structures of bounded Kelly-
width would be to reduce the problem to parity games and
apply the polynomial-time algorithms for solving parity
games of bounded Kelly-width. However, the degree of the
polynomial-time algorithms for parity games in [2], [12]
depends on the upper bound for the Kelly- or DAG-width
of the games considered. By combining a structure of Kelly-
width k and a formula ¢ into a parity game, the resulting
game may have Kelly-width in the order of k - |¢|. Hence,
by translating into parity games we would not obtain fpt
algorithms.

The polynomial-time algorithms for parity games devel-
oped in [18], [2], [12] all rely in some way on the concept
of borders, strategy profiles and interfaces developed first
in [18], the paper on parity games on bounded tree-width.
Our results also make crucial use of these concepts. The
main technical challenge we need to solve is that for
our decomposition theorems we need these profiles to be
definable in the p-calculus in a uniform way, which was
not necessary in the algorithmic papers on parity games.

2. A Decomposition Theorem for L,

In this section we present the statement of our decompo-
sition theorem for the pu-calculus. We propose a notion
of depth for formulas of the p-calculus and then state
Theorem 2.6, which says that this notion of depth is exactly
what we want for our decompositions.

A. Syntax and Semantics of the Modal - Calculus

We use the usual definition of the modal p-calculus L, see
for example in the comprehensive survey [4]. Let us briefly
review these definitions.

Let Var be an infinite set of fizpoint variables and o be
a signature, that is a set of atomic propositions. We define
the formulas of L,[o] recursively.

« T,1€ LH[U}.



e Forall Pe o, P,.-P € L,[o]

o For all X € Var, X € L,[o].

o For all formulas ¢, ¥, (¢ A1), (¢ V@) € L,[o].

o For all formulas ¢, (Og), (Cg) € L,[o].

e For all formulas ¢ and X € Var, (uX.p), (vX.@) €

L,[o].

We omit brackets and o if there is no confusion. With
this definition all formulas are in negation normal form,
that is, negations may only appear in front of propositions.
There are more general definitions of L, with regard to
negation, but every such formula is equivalent to a formula
in negation normal form.

The semantics of the p-calculus is defined on o-structures,
also known as labelled transition systems or Kripke struc-
tures.

Definition 2.1 A o-structure M over a signature o is a
directed graph together with a distinguished set of vertices
X(M) for every X € 0.

We often use M, v, that is, a structure M together with
a distinguished node v € V(M). =

We use standard notation from model theory and graph
theory. In particular, for X C V(M), we write M[X] for
the substructure induced by X.

The notion of a fixpoint variable being free or bound in
a formula is defined the standard way. We write free(p) for
the set of free fixpoint variables of ¢. Let ¢ be a formula
of L,[o]. To evaluate this formula, we use a 7-structure
M together with a distinguished vertex v for some 7 2 o.
The semantics relation M,v = ¢ is defined by induction
on ¢ as follows.

e M,v =T and M,v £ L.

e M,v=Piff ve P(M) and M,v = —P iff v ¢ P(M)

for P e .

e MvE VY iff MivE ¢ or M,v = 1.

e MivEpAYiff MvlE pand M,v = 1.

o M,v = Oy iff there is (v,w) € E(M) with M, w = ¢.

o M,v = Oy iff for all (v,w) € E(M), M,w = ¢.

o M,vE uX.piff

ve(N{S S V(M) |82 {v| M[X/S),v k= ¢}}.
o M,vEvX.piff
velJ{scvM) | S c v MX/S]vE e}
where M[X/S] is the 7 U {X}-structure defined as M
extended by the interpretation X (M[X/S]) :=S.

B. A Notion of Formula Depth for the p-Calculus

Definition 2.2 Let X = (X1,...,X,,) be a finite sequence
of fixpoint variables. A formula ¢ € L, is called consistent
with X if all fixpoint variables of ¢ (free and bound) are
in the sequence, and in every subformula ¢ of ¢ that binds
a fixpoint variable X;, only the variables X1,...,X; can
appear freely in . B

reboot X3
O|
/ v \
/ A\ pX1  reboot
reboot Xy O nXo

| | | path with no reboots

0 X3 A and two operators
path with no reboots | / \
and two operators A X

%
/N L

\
/\ | / N\
O Q H#X1 reboot \Y, X
| | /\
X X2 @

A
X1 Q
Figure 1. An example for reboots

A node z in the syntax tree of a formula that is consistent
with X is called a reboot if the subformula in the node binds
a fixpoint variable X; such that no ancestor of x binds any
of the fixpoint variables {Xi, ..., X;}. The X-depth of a
formula is the biggest number of occurrences of operators
from the set O, O, pu, v that can be found on a path in
the syntax tree that does not visit reboot nodes. The X-
depth is undefined if the formula is not consistent with X.
Figure 1 shows a formula which has (X7, Xo, X3)-depth 2.

The definition is designed so that uX.p and ¢[X/uX.¢)
have the same X-depth.

For a set L C L,, define the L-type of a vertex in a
structure to be the set of formulas from L that are true
at the vertex. A u-depth is a pair 6 = (X, d) where X is a
sequence of fixpoint variables and d is a natural number. A
formula is called consistent with § if it is consistent with X
and its X-depth is at most d. The d-type of a vertex in a
structure is its L-type, with L being the set of all formulas
consistent with §. This information is finite thanks to the
following lemma.

Lemma 2.3 For every u-depth § and finite set of proposi-
tional variables, up to logical equivalence there are finitely
many formulas in these propositional variables that are
consistent with 6.

Proof. Define the standard depth of a formula to be the
biggest number of operators from O, &, p, v on any path in
the syntax tree. It is not difficult to see that, when the set
of propositional variables is fixed, up to logical equivalence
there are finitely many formulas of given standard depth.
If 6§ = (X,d) with X = (X1,...,X,), then a formula with
X-depth d has standard depth at most d - (n + 1), so the
result follows. a



Although the set in the statement of the above lemma
is finite, its size is non-elementary with respect to 6.

C. Decompositions of Directed Separations

As promised in the introduction, we will prove a decom-
position theorem for the union of two structures with a
small intersection and some additional edges all going in
the same direction. To formalize this, we introduce directed
separations.

Definition 2.4 Let M be a o-structure. A pair (M;, Ms)
of induced substructures is a directed o-separation of M
with interface X = (x1,...,xy) if

o V(M) =V(M)UV(My),
« X = {:L’l, ce ,xk} = V(Ml) N V(MQ),
o and there are no edges from My \ X to M7\ X. A

Abusing notation, we write M = (M, M) to denote that
(My, M>) is a directed separation of M, and notationally
we consider (Mj, Ms) to be interchangeable with M.

For some k, let P = Py, ..., P, be a sequence of fresh
proposition symbols. For a o-structure M and a k-tuple
X = (21,...,25) € V(M)*, we define 95(M,X) to be
the o U P-structure based on M such that P; is true only
at the node ;. If the sequence P = P,..., P, is longer
than X = (z1,...,;), then d5(M, X) is defined the same
except that P; is always false for ¢ > [.

Definition 2.5 Let (M, My), (My, M3) be two directed
separations with the same interface X. Let P be a set of
|X| many proposition symbols and let L C L,[o U P].

We call (My, Ms), (My, M}) L-equivalent if

o for every vertex in X, its L-type is the same in
O5(M>, X) and d5(M}, X), respectively, and

o for every edge (v, w) in (M7, Ms) withv € My, w € Ms
there is an edge (v,w’) in (M7, M}) with w € M} such
that w and w’ have the same L-types in 05(M2, X)
and 05(Mj, X), respectively, and vice versa. -

If § is a u-depth, we say that two directed separations
are d-equivalent if they are L-equivalent with L being all
formulas consistent with . Let us state our main theorem.

Theorem 2.6 Let § be a p-depth, and let M = (M, My),
M' = (M, M) be §-equivalent directed separations. Then
for every node in My, its d-type is the same in M and M'.

In fact, we will prove a more general version of Theo-
rem 2.6, without limiting us to p-depth. It turns out that
there exists a suitable closure operator CLp : 21+ — 20»
that maps finite sets to finite sets such that the main
theorem holds for CLp(L)-equivalent directed separations.
In particular, we can choose L = {p} if we are only
interested in the model checking problem for a fixed formula
¢ consistent with 0. Then CLp({¢}) will be significantly
smaller than the set of all d-consistent formulas.

3. Proof of the Decomposition Theorem

Definition 3.1 For ¢ € L,, let sub(¢) be the set of all
indexed subformulas without formulas of the form X for
fixpoint variables X. That is,

sub(p) := {(¥,4) | ¢ is a subformula of ¢ at position 4

in the string ¢ and 4 is not a variable}.

Let sub®(p) = sub(p) \ {(¢,0)} be the set of proper
subformulas.

For an occurrence of a fixpoint variable X in a formula
©, its definition in ¢ is the enclosing fixpoint (uX.1,1) €
sub(y) (or (vX.4,i) € sub(yp)) where this occurrence
of X is quantified. For a formula (¢,7) € sub(p), let
closure, (¢,i) = (¢',i) be such that ¢’ is the formula ¢
with all free variables replaced by their definitions until
there are no more free variables.

Define CL(yp) := {closure,(¢,1) | (1,i) € sub(y)} and

CL™(p) = CL(¢) \ {(,0)}. B

We will often not distinguish formulas in sub(y) and CL(¢p)
and instead identify them via the obvious bijection that
preserves the second component.

We will usually write ¢ € sub(yp) instead of (¢,i) €
sub(yp) if there is no confusion. We only need the index 4
in order to distinguish identically looking subformulas.

Even though two subformulas may look identical, they
could be in the scope of different fixpoint operators. A few
paragraphs below we will introduce a closure operation
called PT p that modifies different subformulas in different
ways in order to distinguish between these cases. For
this reason we need to keep track of the positions of the
subformulas. In the rest of the paper, whenever we mention
an element of sub(y) or CL(yp), the reader should assume
that it also contains the position of the subformula in ¢.

Lemma 3.2 For all ¢ € L,,, the set
{¢ | (i) € CL(g) for some i}

is equal to the usual definition of the Fischer-Ladner closure
of ¢ (see e.g., [21, Definition 4.1]).

For a set of formulas L C L, define CL(L) = {¢ |
¢ €L, (¢,i) € CL(p)}. In this set we do not need the
index ¢, different from CL(yp).

Let P = {P1,..., Py} be a set of proposition symbols
disjoint from o.

For a formula ¢ € L,[oc UP] and ¢’ € L,[oc U P], we
call ¢’ a priority tracking variant of @ if ¢’ is syntactically
derived from ¢ by applying the following operation for
each subformula 1) of the form ¢ = Cx or ¢ = Oy.

1) If ¢ = Oy, then pick a set Q@ C P and replace the
subformula i by

((\/ R) \/<>x>~

ReQ



2) If ¢ = Oy, then pick a set @ C P and replace the

subformula v by
(( N ﬁR) A DX).

ReQ

We denote the set of all priority tracking variants of ¢
with respect to P by PTp(p). Note that PTp () is finite
because ¢ has a finite number of subformulas and P is
a finite set. Similar to CL, we define PTp(L) for sets of
formulas L C Ly[o U P] as PTp(L) := U, PTP(¢).

Definition 3.3 Let CLp(L) := PTp(CL(L)). !

Lemma 3.4 CLp(CLp(L)) = CLp(L) for all L C L,[cU
P].

Proof. By definition, CLp (L) is closed under PTp. Hence,
it is enough to show CL(CLp(L)) = CLp(L). Let uX.p €
CLp(L). We want to show that ¢[X/uX.o] € CLp(L),
where ¢[X/uX.p] is ¢ with all free occurrences of X
replaced by pX.p. By definition of PTp, there is a
uX.¢' € CL(L) such that ¢ is priority tracking variant
of ¢'. Because CL(L) is essentially equal to the Fischer-
Ladner closure of L, we have ¢'[X/uX.¢'] € CL(L).
Since ¢ is a priority tracking variant of ¢’, the formula
©[X/uX.p] is a priority tracking variant of ¢'[X/uX.¢'],
hence p[X/uX.¢] € PTp(CL(L)).

The other cases are similar. O

Definition 3.5 For a structure M,v, a k-tupel X €
V(M)* and a set L C L,[o U P] where P is sequence
of at least k£ many proposition symbols, we define the
(L, P)-type of v in M, X as

tpLP(M,v,Y) = {p e CLp(L) | Op(M, X),v = ¢}

We also define the set of (L, P)-types realized in a
structure,

Top(M,X) = {tpL,p(M,v,Y) ’ vE V(M)}.

Finally, let T (P) := 2€Lr (1) be the set of all candidates
for (L, P)-types. -

Using the new terminology, let us restate Theorem 2.6
in these more general terms.

Theorem 3.6 Let P be a sequence of proposition symbols
disjoint from o, L C L, [0 UP] and let (M, Ms), (M1, Mj)
be CLp(L)-equivalent directed o-separations with interface
X.

Then for all v € M;, we have

tpL,ﬁ((Mla MQ),U,Y) = tpL’f((Mla Mé),l&Y).

It is not difficult to show that if all formulas in L
are consistent with a p-depth §, then the same is true
for CLp(L) (this is Lemma 3.8). Therefore, d-equivalence
implies CLp(L)-equivalence, and thus Theorem 2.6 follows
from Theorem 3.6. We will also use a different and slightly
stronger way of stating Theorem 3.6, stated below.

Theorem 3.7 Let P, Q be sequences of proposition sym-
bols such that cNP=0NQ=PNQ =10.

Let L C L,Jo U P] and M be a structure with a directed
o-separation (My, M) with interface X. Let Y € V (M;)!@!
be a tuple.

For allv € My, the set tpL@(M, v,Y) depends only on

o M and Q and
o (i tp, (Mo, z;, X)) ’ T, € X} and

o {(v.tp, (Mo, w, X)) | (v,w) € BE(M) 1 (M; x MQ)}.

Provided L is finite, tpL@(M,v,?) can be computed from
these sets.

Furthermore, for every w € Msy, the set tvaa(M,w,?)
depends only on the above sets and on tpo(Mg, w, X) and
can be computed from these sets if L is finite.

A. Parity Games

To prove the decomposition theorems, we want to use
the model checking game of the modal p-calculus. Instead
of replacing a substructure by a different substructure
preserving the types in the whole structure, we replace a
subgame by a different subgame preserving the winner in
the whole game.

For this, we first need parity games, strategies and the
model checking game. These are all well-known concepts
in the literature, see for example [10]. We briefly review
the key concepts.

The winner of a parity game from a given node is always
determined. However, in order to replace subgames by
different subgames preserving the winner in the whole
game, we need a more subtle analysis of the subgame than
just its winner.

We call the intersection between a subgame and the rest
of the game its interface. For the more subtle analysis, we
look at partial strategies, which may be undefined on some
nodes of the interface. If a partial strategy is undefined on
some node, the player indicates that she would like to leave
the subgame. These strategies can be partially ordered by
their profiles, that is, the set of interface nodes that are
possibly reachable by Player O, together with the worst
priority that Player O can enforce.

All this culminates in a proof that the feasibility of
profiles of strategies is in fact definable in L,. The
formulas that define profiles in a partial model checking
game of ¢ will all be in CLp({¢}), so this proves that
tpy, f(M ,v,X) determines the set of possible profiles,
which we will use to define a specific parity game.

Let Z = (Z1,...,Z,) be a finite sequence of fixpoint
variables. Recall the definition of a formula consistent
with Z (Definition 2.2 on page 3). We strengthen this
definition in the sense that every Z; is either bound only in
p-subformulas or only in v-subformulas. Let (p1,...,pn) be
a strictly increasing sequence of natural numbers such that
p; is odd if and only if Z; is only bound in p-subformulas.



Let ¢ € L, be consistent with Z and uZ;.¢) € sub(yp).
We write ﬁZi.z/J to indicate that Z; gets the priority p;
in the model checking game that we will define shortly
(similarly for v). We call a formula with numbers over their
fixpoint operators an annotated formula. In this section it
does not affect the results if the sequences are infinite.

From now on, let us fix a sequence Z and a corresponding
priority sequence (p1,...,pn). All formulas in the rest of
this section should be consistent with Z and annotated
with the p;, even if we do not mention this explicitly. For
example, a formula vY.O(uX Y. OXVOY)VOY consistent
with (X,Y) under the priority sequence (1,2) would be
labelled as 7Y.O(LX.0Y.0X V OY) V OY. Note that it

cannot be labelled PY.O(X.0Y.0X V OY) V OV, even
though these priorities would work in the model-checking
game. However, they violate the sequence (X,Y’) and the
priority sequence (1,2).

Note that the first formula is an element of CL(bX.
DY.0X Vv <Y'). This holds true in general.

Lemma 3.8 Let Z = (Z1,...,Zy), ¢ € Ly, be consistent
with Z and ¢ € CL(yp). Then 1 is consistent with Z.

Proof. We prove this by structural induction. If o = x1 Axa,
then obviously x; and x» are consistent with Z. The same
is true for most other cases. The only interesting cases are
the fixpoints. We only consider the case of u fixed points,
the other cases follow analogously.

Assume that ¢ = pZ;.1). We need to show that ¢[Z;/¢]
is consistent with Z. Because ¢ is consistent with Z, the
only places where ¥[X/¢] could become inconsistent is
a subformula of the form ¢ inside the scope of another
fixpoint operator pZ;.x with j > ¢ with Z; being free in ¢.
This is impossible because ¢ does not have free variables.

O

Now let us briefly review the definitions of parity games,
strategies and model checking games.

Definition 3.9 A parity game P = (V,Vo,FE,w) is a
directed graph (V,E) with Vo C V and a function
w : V — N mapping nodes to priorities. -

A parity game is played by two players, Player & and
Player O. The game starts on a node v. It is Player <’s turn
if the current node is in Vi, otherwise it is Player O’s turn.
In their turn, the players must choose an outgoing edge
and the endpoint becomes the current node for the next
turn. If a player cannot make a move, he loses. Otherwise,
the game continues indefinitely.

The set of nodes visited during an infinite play is an
infinite path ¥ = vy, vs, . ... Let p be the minimum priority
that occurs infinitely often on ©. The path v is winning for
Player < if and only if p is even.

Definition 3.10 Let P be a parity game. For a partial
function 7 : V(P)* — V(P) on finite non-empty paths of
nodes and a path (vy,...,v,) € V(P)T, we say that U is

m-conforming if for all i < n with v; € Vo (P), we have
(v1,...,v;) € dom(w) and (v, 7((v1,...,v;))) € E(P). An
infinite path is m-conforming if all its initial segments are
m-conforming.

A strategy for Player ¢ for a game (P,v) is a partial
function 7 : V(P)* — V(P) with the following conditions.

1) For every (v1,...,v,) € dom(n), the sequence (vy, ...,

Un, T(V1,...,0,)) is a w-conforming path in P with
Un € VQ(P)
2) For every m-conforming path (vi,...,v,), if v, €

Vo (P), then (vy,...,v,) € dom(n).
A strategy 7 is winning for Player < if every maximal
m-conforming path is winning for Player <. A game P on
a node v is winning for Player < if Player & has a winning

strategy for (P,v). o
Definition 3.11 A strategy 7 is positional if w(vy,...,v,)
only depends on v,,. a

When we talk about strategies and do not explicitly
mention the player, we assume that the strategy is meant
for Player <. The following result is well-known (see e.g.,
[23]).

Theorem 3.12 For every winning strategy w for a game
(P,v), there exists a positional winning strategy p for (P,v).

Parity games are relevant because they are the model
checking game for the modal p-calculus.

Definition 3.13 For a o-structure M and a formula ¢ €
L,[o], let P[M,¢] = (V,Vo,E,w) be the model checking
game defined as follows.

V(PIM, ¢]) i= M x CL(y)

There is a an edge from (v,v) to (w, x) if

e v = wand ¥ € {xAX,XxVX, X Ax,xX' Vx} for

some Y’ or

e v=w, ¢ € {uX.x',vX.xX'} and x = closure,(x’) or

e (v,w) € E(M) and ¢ € {Oy, Oy}
A node (v,) is a O-node if either

e =P and M,v= P or

e € {xAX,Ox} for some ¥, x'.
A node (v,v) has the priority

w(v, ) = {p,

p"  otherwise,

if ¢ = fLX.x or Y = ZZ;X.X for some y

where p’ is the maximum priority. a

It is easy to show that this definition gives a well-defined
model checking game (see e.g., [22]).

B. Profiles and Types

In the previous section we considered parity games, (posi-
tional) strategies and the model checking game. We now
generalize these definition to partial games and partial
strategies. This is necessary so we can analyze the effect



of replacing a subgame by a different, but in some sense
similar subgame.

Definition 3.14 A partial parity game is a parity game
P with a subset U C V(P) called the interface. .

The game is played the same way as a parity game,
except that upon reaching an interface ¢-node, Player <&
may choose to end the play and win immediately. Therefore,
a partial strategy for Player < is defined the same way as in
a non-partial parity game, except that the partial strategy
may be undefined on plays that end in an interface ¢-node.

Definition 3.15 Let P be a partial parity game. A partial
strategy for Player © for a game (P, v1) is a partial function

7 : V(P)* — V(P) with the following conditions.
1) For every (v1,...,v,) € dom(x), the sequence (vy, ...,
Up, m(V1,...,0y,)) is a m-conforming path in P with

vp € Vo (P)

2) For every m-conforming path (vq,..
Vo (P) and vy, ¢ U, then (vq,...,

S 0p), if v, €

vp) € dom(m). A

A partial strategy 7 is called winning if for every strategy
of the opponent, the resulting play either visits an interface
node where 7 is undefined or satisfies the parity condition.
Formally, we define this as follows.

Definition 3.16 Let (P,v;) be a partial parity game with
interface U and 7 be a partial strategy. Let P’ be the game
constructed from P by adding a O-node called T and an
edge from every node in Vo NU to T. Then define 7’ as
an extension of m such that on all w-conforming paths
(v1,...,v,) with v, € Vo NU, if (v1,...,v,) ¢ dom(w),
then 7/((v1,...,v,)) = T. Then 7’ is a strategy on (P’ v1).

We say that 7 is a partial winning strategy from node
vy iff 7' wins from node vy in the game P’. n

If we have a structure together with some subset of its
nodes, we consider the corresponding model checking games
to be partial with respect to these nodes.

Definition 3.17 Let ¢ € L,[o], M be a o-structure
and X C V(M). The game P[X, M, ] is the partial
parity game defined as P[M, ¢| with interface {(v,v) €
X x CL(yp) | ¢ starts with & or O}. We will usually write
P[M, ¢] for this game if X is clear from the context.

We emphasize again that P[X, M, ¢| and P[M, ¢,] are
exactly the same game, only viewed from two different
angles.

Definition 3.18 Let P be a partial parity game with
interface U. We define
strategy-targets(P) := {(u,p) | u € U, p a priority of P}
profiles(P) := {y C strategy-targets(P) | for all u

there is at most one p with (u,p) € y}. -

Definition 3.19 Let C be the reward ordering on prior-
ities. That is, p C p’ if p is better for Player < than p’.
Formally, p C p’ is true if and only if

Py P

Figure 2.

e piseven and p’ is odd or
e both p and p’ are even and p < p’ or
e both p and p’ are odd and p > p'. -

Definition 3.20 Let P be a partial parity game with
interface U, v; € V(P) and let 7 be a partial winning
strategy for (P,v1). We define

preprofile(r, vq) := {(vn, 1r§nilé1nw(vi)) |

n>1, (?]1,...
vp, € U and (v, ...

,Up) 18 a path with

,Up) ¢ dom(m)}
profile(m,v1) := {(u,p) | p is E-maximal such that

(u,p) € preprofile(r,vy)}.

The min is taken with respect to the usual ordering <.
We say that a profile y € profiles(P) is possible on (P, vy)
if there exists a 7 such that y = profile(w, vy). o

Definition 3.21 Let y,y’ € profiles(P). We say that y is
at least as good as y' iff for every (u,p) € y, there is a
(u,p’) € y with p C p’. We denote this as y C ¢/'. -

As an example, consider the two parity games given
in Figure 2 with interface nodes O, O. For simplicity, we
assume that all nodes in these parity games have priority 0.
Then the profile {(O,0)} is possible on (P;,v) but not on
(P2,v). On the other hand, the profile {(O,0),(O,0)} is
possible on both (Py,v) and (P, v). Note that on (Py,v),
the last profile is only possible with a non-positional
strategy. However, the need for a non-positional strategy
here is of course somewhat artificial because Player & must
deliberately avoid a decision where she could simply make
one.

As one might expect, every partial strategy can be
converted into a positional partial strategy at least as
good as the original strategy.

Lemma 3.22 Let P = (V, Vo, E,w) be a partial parity
game with interface U, v € V and w be a partial strateqy
for (P,v). Then there exists a positional partial strategy p
such that profile(p,v) C profile(m, v).

Proof. The proof is a reduction to the positional determi-
nacy of (non-partial) parity games.



We define a game P’ = (V' Vo', F’,w’) based on P and
use Theorem 3.12. Let

V' :=V U{v, | pis a priority of P} U{v,}

Vo' := Vo U{v,}

E':= EU{(vp,v) | p is a priority of P} U
{(u,vp) | pis odd and (u,p — 1) € profile(w, v)} U
{(u,vp) | p is even and (u,p + 1) € profile(m, v)} U
{(u,v1) | (u,p) ¢ profile(m, v) for all p}

w(w) ifwe V(P)
W(w) =40 ifw=wv,
P if w=wv,.

Note that for each u € U, there is exactly one v, such
that (u,v,) € E’. So we can extend 7 to a strategy 7’ on P’
by defining 7’(v1,...,u) = v, if w(vy,...,u) is undefined.

We claim that 7’ is a winning strategy. Let v = vy, va, . ..
be an infinite 7’-conforming path. Clearly the path is
winning if it has a m-conforming suffix.

So assume that it visits some « € U an infinite number
of times followed by w,. If p is odd, then (u,p — 1) €
profile(m, v) guarantees that the worst priority on all path
segments that go from v to w is p — 1. By the pigeon
principle there is at least one priority p’ C p — 1 that we
visit infinitely often on the path. Furthermore, p’ <p—1
because p — 1 is even. This means the priority p of v, is
irrelevant because p’ < p.

If p is even, then (u,p+1) € profile(r, v) guarantees that
the worst priority on all path segments that go from v to u
is p+1. So there must be a minimum priority p’ C p+1 that
occurs infinitely often on these path segments. If p’ > p,
then p’ becomes irrelevant because we visit v, an infinite
number of times. If p’ < p, then p becomes irrelevant.
However, p' C p + 1 then implies that p’ is even.

We repeat this argument for all pairs (u,v,) that occur
infinitely often in the path. We see that in all cases the
minimum priority that occurs infinitely often is even, so
7' is a winning strategy.

By Theorem 3.12, there exists a positional winning
strategy p’ on (P’,v). Let p be the restriction of p’ to
P. We claim that profile(p,v) C profile(r, v).

Clearly (u,p) ¢ profile(w,v) implies (u, p) ¢ profile(p, v)
because otherwise we would visit the node v; and im-
mediately lose. Let (u,p) € profile(p,v) and (u,p’) €
profile(m, v). We have to show p C p'. If p O p/, then
there is a p-conforming path from v to u with a priority
no better than p. In P’ this gives us a p’-conforming path
by going back from u to v. However, the only new node we
visit is v, and p” is not enough to offset p, so this path
loses, contradicting the fact that p’ was a winning strategy.

O

Definition 3.23 The type of a node v € V(P) is the set

of optimal profiles.

ptypep(v) := {profile(m,v) |
7 is a partial winning strategy for (P,v) and
there is no partial winning strategy 7' such that
profile(n’, v) C profile(m,v)}. —|

By Lemma 3.22, the strategies occurring in the above
definition can be chosen to be positional.

Next, we define the notion of a parity game simulating
another parity game. A game simulates another game if
it behaves in the same way when viewed from the outside.
For every node in the old game there must be a node in
the new game that has the same type. Internally the games
could be quite different, and in fact the new game could
have a very different number of nodes than the old game.

Our goal is to find small games that simulate large games.

Definition 3.24 Let P, P’ be partial parity games with
the same interface U.

The game P’ simulates P if there is a map f: V(P) —
V(P') such that f(u) = u for all u € U and for every node

v € V(P), ptypep(v) = ptypep: (f(v))- B

Whenever we have a game P with an induced subgame
Q@ with no edges going from @ to the rest of P except via
the interface of @), we can replace @ in P by one of its
simulations without the rest of P noticing.

Lemma 3.25 (Simulation Lemma) Let P,Q be parity
games such that Q is an induced subgame of P with interface
U and with no edges from Q\U to P\ Q. Let Q' be a partial
parity game with interface U which simulates QQ via the
function f:V(Q) = V(Q'). Extend f to V(P) by letting
fw)=wv forallve V(P)\V(Q).

Define P’ as the parity game where the induced subgame
Q has been replaced by Q' and edges pointing to nodes
v € V(Q) now point to f(v) € V(Q').

Then for allv € V(P), Player & wins (P, v) iff Player <
wins (P', f(v)).

Proof. Translation of strategies. Because the types agree,
neither player can be worse off in one game. O

C. Definable Profiles

In the next step, we would like to encode a profile in a
formula. Given a profile y in a model checking game and a
starting point = (2’, 1), we would like to define a formula
¥ with the property that ¥ is true on the node 2’ in the
structure if and only if the profile y is possible on (P, z).
However, we do not know how to do this.

Hence we weaken the restriction and want Y to be
true iff a profile y’ C y is possible. This is enough for our
purposes because the type of x only cares about E-minimal
profiles. This formula turns out to be definable. Using a
suitable definition of ¥¥, we get the following theorem.



Theorem 3.26 Let P be a sequence of proposition symbols
disjoint from o. Let ¢ € L,[o U P|, M,v be a o-structure
and X be a sequence of nodes of M. For 1 € CL(p), y €
profiles(P[M, ¢]), it holds that M,v = Y iff there is a
positional partial winning strategy m for (P[M, ¢], (v,4))
such that profile(r, (v,v)) C y.

Corollary 3.27 Let P be a sequence of proposition symbols
disjoint from o. Let ¢ € L, o UP], M,v be a o-structure,
X e V(M)'Pl and 4 € CL(p). Then

ptypep(yy o) (v,) = {y € profiles(P[M, ) |
M,v = Y and there is no y' Ty with M,v = ”(/}y,}.

That is, tpy,, 5(M,v,X) determines ptypepar, ) (v, 7)).
Before we can explain 9¥, we need one more definition.

Definition 3.28 For an annotated ¢ € L,[o], ¥ € CL(y)
and x € sub(¢)), let prio, (¢ ~+ X) be the minimum priority
of all fixpoint operators that enclose x in 1. -

Definition 3.29 Let P = (Py,..., P;) be a sequence of
proposition symbols disjoint from ¢. Let ¢ € L,[oc U P]
be a formula, M be a o-structure and X = (x1,...,2%) €
V(M)*. Let ¢ € CL(p) and y € profiles(P[M, ¢]). For
every ' € sub®(¢), there is a formula ¢ € CL(y)
corresponding to 1’. We inductively define an operation -¥
over the structure of 1’.

VY=V, (=V)Y:=-V
(xxx)” = ()« ()
(aX.x)? = aX.(x")

(Ox)" = ((\/ H-) % <>(xy))

i€EN

@0" = (( A -P) nen)

ieN

for prop. or var. V
for x € {V,A}
for o € {p, v}

In the case Oy, we use
N ={1<i<k]
((ws,¢"),p") € y for some p’ 3 prio, (¢ ~ Ox)}.
In the case Oy, we use
N ={1<i<k]
((zi, "), p") ¢ y for all p’ C prio, (¢ ~ Ox)}.

In both cases, ¢’ € CL(yp) is the formula corresponding to
Oy or Oy, respectively. B

The motivation behind this seemingly quite arbitrary
definition is that if a profile says we can reach (z;, ¢x) with
the worst priority p’, and the actual priority we have is at
least as good as p’, we are allowed to take the shortcut and
leave the game. That is why we add X; to the disjunction
in this case. Of course, we need to pay close attention to
the games that are involved, because (z;, Ox) is not a node
in P[M, ¢] and y is not a profile of P[M, ¢]. However, this

is not a problem because every <y corresponds to a unique
¢’ € CL(p), and the game P[M, )] is a partial unfolding
of the P[M, ¢]. This means that every strategy on one of
these games is also a strategy on the other game, although
not necessarily positional.

Dually, in the case Oy, if the actual priority is worse than
what the profile wants, we must make sure that (z;, Oy)
is not reached, so we add —X; with a conjunction.

A formal statement of this explanation is Theorem 3.26.
Before we can prove this, however, we need a technical
lemma about prioy, (1) ~ Xx).

Lemma 3.30 Let M be a structure, v,x € V(M) and
p € Ly, v € CL(p) and x € sub(t)). Then every path from
(v,9) to (x,x) in P[M, ] (with priorities according to ¢)
has prio,, (¢ ~ x) as its minimum priority.

Proof. Let p be the minimum priority of a path from
(v,9) to (z,x). Clearly p < prio,(¢) ~ x) because x is a
subformula of ¢, so every fixpoint operator enclosing y
must have been visited at some point on the path.
Assume to the contrary that p < prio,(¢) ~ x). This

means that there is a node (v, ¥X.¢') with a € {u, v} on
the path. Assume this is the first node of priority p on
the path. The priorities increase with respect to a fixed
sequence of variables Z, so 1’ cannot contain a free variable
Y for any Y that is quantified earlier, or p would have to be
larger. But this means that (Z))LX.”L/)/ is a closed formula. So in
order to reach (z,x), the formula x must be a subformula
of &X )’ and we have that &X encloses X, a contradiction

to p < prio,, (¥ ~ x). O

We split the proof of Theorem 3.26 into two directions.
Lemma, 3.31 shows the first direction and Lemma 3.32 the
other.

Lemma 3.31 Let P be a sequence of k proposition sym-
bols disjoint from o. Let ¢ € L,jo U P], M,v be a o-
structure, X € V(M)*, 1 € CL(y), y € profiles(P[M, ¢]).
Let 7 be a partial winning strategy for (P[M, ], (v,))
and m, be the corresponding strategy on P[M,¢]. If
profile(m,, (v,v¢)) C y, then there exists a winning strategy
7 for (P[M, Y], (v,¢Y)).

Proof. Let m be as required. Without loss of generality
we are going to assume that m, is a positional strategy.
According to Lemma 3.22; this is always possible. Then 7
can be chosen to be positional, too.

There is an obvious mapping from sub(v)) to sub(¢¥)
because Y is only a slightly modified version of 1.

Define 7’ positionally on P[M,¥¥] so that it follows 7
wherever possible using the mapping we just described.
The only points where 7’ is undefined are the nodes of
the form w := (w, \/;cx P; V Ox). On these nodes, if w =
x; € X for some i € N, define 7/(w) = (w, P;). Otherwise,
define 7' (w) = (w, Ox). We claim that 7’ is a strategy on
(P[M, Y], (v, 9¥)).



Let (x;,Ox) € P[M, Y] be such that (x;, Ox) is reach-
able in P[M,¢¥]™ from (v,4¥) but (z;,Ox) ¢ dom(x’).
Let (v1,...,v,) be a 7'-conforming path with v; = (v, ¢¥)
and v, = (x;, Ox) with minimum priority p. This path
corresponds to a m-conforming path in P[M, ] starting
from (v,) with the same minimum priority, and hence a
me-conforming path in P[M, ¢] with the same minimum
priority. By Lemma 3.30, we have p = priow(l/} ~ Ox).

Let Ox' € CL(p) be the unique subformula of ¢
corresponding to <x. Then we have ((z;,Ox'),p') €
profile(m,, (v, 1)) for some p’ J p and hence ((z;, Ox’),
p") € y for some p” J p'. By the construction of ¥, the
node (z;, ¢x) in P[M,¢¥] must have a unique predecessor
(w4, Ven Pi Vv ©Ox) for some set N. Recall the definition of

N={1<i<k|
(zi, ©X, q) € y for some ¢ I prio (¢ ~ Ox)}.

We find that 7 € N, so the path was not 7’-conforming.

We need to show that 7’ is winning. Let (v1,...,v,) bea
maximal 7/-conforming path in P[M, Y] with v; = (v, ¢Y).
By definition of #’, the last node cannot be (w, P;) for

Assume v, € Vi, that is, the path is losing. The same
path can be viewed as a maximal 7-conforming path in
P[M, ). In P[M, )], the last node is also in Vo and has no
successors, so we would have a m-conforming losing path
in P[M, ], which contradicts the assumption that = was
a partial winning strategy.

Clearly all infinite paths starting from (P[M, ¥Y], (v,9Y))
can never visit a node of the form (w, P;), so they can be
viewed as paths on P[M, v]. They visit exactly the same
priorities. This implies that 7’ is a winning strategy. O

Lemma 3.32 Let P be a sequence of k proposition symbols
disjoint from o. Let ¢ € L,[oc U P], M,v be a o-structure,
X e V(M)*, ¢ € CL(p), y € profiles(P[M, ¢]). Let 7’ be
a winning strategy for (P[M, Y], (v,9Y)).

Then there exists a partial winning strategy m for
(P[M, 4], (v,)) such that for the corresponding partial
strategy m, on P[M, ] it holds that profile(n,, (v,v)) C y

Proof. Let 7’ be as required. Assume 7’ is a positional
winning strategy. Define = (positionally) like 7’ where
possible. If 7'((w,\,cy Pi V ©OX)) = (x4, P;) for some
w € V(P[M,¢Y]), N and i, then leave 7'((x;, Ox)) un-

defined.
Similar to the proof of the previous lemma one shows that
7’ is a partial winning strategy and profile(r,, (v,v)) C y.
O

D. A Small Parity Game

With Theorem 3.26 at our hands, we can now define a
partial parity game simulating the model checking game
that only depends on the types of some nodes in the original
structure. The parity game consists of four layers of nodes.

10

PtyPep(ar, o] (v)

Figure 3. A part of P¥

One layer of <-nodes, one for each type, where
Player & can choose a profile.

Then one layer of O-nodes, one for each profile, where
Player O can choose one of the allowed paths.

Then a layer of nodes with out-degree 1 to ensure the
priorities match the chosen path.

4) Finally a layer representing the interface.

The edges only point from one layer to the next or from
the last layer back to the first layer. Formally, let M be
a structure and X = {z1,..., 25} C V(M). Let p € L,,.
First, we define the layers described above.

V) = 2proﬁles(P [M,])

Vo := profiles(P[M, ¢])

V3 := strategy-targets(P[M, ¢])
Vi =X x CL(yp).

Next, we define the game P¥ = (V,V,, E,w) with inter-
face V4 depending only on ¢ and the sets Doy, (M, z;, X),
but not on M.

VI:‘/le‘/QU‘/gU‘/ZL E5:E1UE2UE3UE4
Vo :=Vi U{(x;,v) € Vy | ¢ starts with a O}

w(v) ::{ for v = (z;,,p) € V3

otherwise,
where p’ is the maximum priority of .
For the set of edges, we connect the nodes according to
the subset relation and the nodes from Vj back to their

types.

(z,y) eVix Va |y € x}

(,)evzxvg\ye:g}

((x27¢1 w )) S V3 X V4 | (x“’(/}) =
z,t) € Vi x Wy ’ t = PtyPep(p ) (x)},

T,y
x

{
{
{ (590" }

Ey =

/—’H

Note that Ej is determined by the sets tp, (M, z,X)
by Corollary 3.27.

To illustrate this construction, assume that P[M, ¢] has
the interface {z1,...,24} e X x CL(yp ) and a node v €
PIM 2] with ptyberta () = {{(z1 D] {(1.0) (2:2)
(24,0)}, {(22,3)}}. Figure 3 illustrates a part that could
occur in the game P%. In the full game P¥, we would also



add the edges (2, ptypep(as,)(2i)) € Va x V1. In the node
ptypepiar,)(v), Player & can choose one of the possible
profiles. This corresponds to Player < fixing a strategy
m. After fixing her strategy, Player O can choose a path
through the game conforming to this strategy. The profile
tells us exactly what the worst possible paths are, and the
layer V3 makes sure that the correct priority is visited.

The goal of this construction is to get a game such
that the type of a node labeled ptypep(y; ,j(v) is exactly
ptypepiar,)(v). This leads to the main theorem of this
subsection.

Theorem 3.33 For a formula ¢ € L, a structure M and
X CV(M), the game P? simulates P[M, ).

Proof. For every node u € X x CL(yp), define f(u) = u.
For the remaining nodes v € V(P[M, ¢]) \ (X x CL(yp)),
define f(v) = ptypep(ps,y) (V) € Vo (P?).

All we have to do now is to show that ptypep(s ,(v) =
ptypep, (f(v)) for all v € V(P[M, ¢]). First we show C.

Let m be a positional partial winning strategy for
(P[M, ], (v,9)). We want to construct a positional par-
tial winning strategy 7' for (P¢, f((v,))) such that

profile(m, (v, ¥)) = profile(w’, f((v,v))).
For every node (v, %) € P[M, ¢], define

ﬂ—l(ptypeP[M,Lp] ((v,9))) := profile(m, (v,)).
For (x;,v) € Vo(P?), if (z;,¢) € dom(n), then we define
7 (21, ) = PtyPepiagpy(z:)- Otherwise, leave '((z, 1))
undefined.

We claim that 7’ is a partial winning strategy on
(P?,(v,)). By Theorem 3.26, for all (z;,x) € X x CL(p)
it holds that M, x; &= yProfile(m.(zi:X)) S the unique edge
leaving from (x;,v) in P® goes to some node y with
profile(m, (z;,v)) € y.

Inductively it follows that every m’-conforming path
in P?¥ corresponds to a w-conforming path in P[M, y]
and vice versa. So 7’ is a partial winning strategy with
profile(r, (v,¢)) = profile(x’, f((v, ¥))).

It remains to show the other direction ptypepy; . (v)
ptypepe (f(v)).

Let 7’ be a positional partial winning strategy for
(P?, f((v,v))). We want to construct a partial win-
ning strategy 7w for (P[M,¢], (v,%)) such that profile(m,
(v, ¥)) = profile(n’, f((v,1))).

By Theorem 3.26 and some technical work, we can
show that there is a 7 such that profile(n, (v,9)) C
profile(n’, f((v,4¢))). As we saw when proving the other
direction, we can construct from 7 a partial winning
strategy ©” for (P, f((v,%))) such that profile(r, (v, 1)) =
profile(w”, f((v,%))). From the definition of ptype() it
follows that profile(m, (v, 1)) = profile(x’, (v, )). O

D)

E. Proof of the Decomposition Theorem

With Theorem 3.33, we finally have the necessary tool to
conclude the proof of the decomposition theorems from
page 5.

11

Proof of Theorem 3.6. Fix some ¢ € CLp(L). Consider
the model checking game P[M, ] and the induced sub-
game P[Ms, ] with interface U. We can assume that
V(P[Ma, ¢]) NV (P[M,¢]) = U by duplicating some nodes
as necessary.

The game P[Ms, ¢] is simulated by P¢, constructed as
described in Theorem 3.33. By Lemma 3.25, we can replace
P[Ma, ¢] by P¥ (by properly adapting the edges) without
changing the winner on (v, ). Since the construction of
P¥ only depends on the types of the nodes in X, we will
get the same game P¥ if we start the construction with

Let (v,w) be an edge from M; \ X to M \ X and let
w’ € M be the node chosen as the replacement for w. Be-
cause tp{¢}7p(M2,w7Y) determines ptypepyr, (W, ¢))
by Corollary 3.27 and we have

tp{‘P}v?(M% w, Y) < tpL,?(M% ’U.),Y),
it follows that

PtyPep(as,, ¢ (W, ©)) = Ptypepy o (W', ©)).

So in the simulation, the edge will point to the same node
no matter if we started with My or MJ. O

Proof of Theorem 3.7. The first part is essentially a different
way of stating Theorem 3.6 which follows immediately with
the same argument as in the previous proof.

Note that we may assume without loss of generality that
X NY = (. If this is not the case, then we have z; = y;
for some x; € X,y; € Y and the propositional variables
X; € P and Y; € Q will be interchangeable.

Set L’ CLg(L). Theorem 3.6 states that
tprr (M, v,0) is invariant under CLgy(L’)-equivalent di-
rected separations for all v € M;. All we need to show is
that the requirements listed in Theorem 3.7 specify the
directed separation (M7, M) up to CLg(L’)-equivalence.

For all nodes w € My, the set tpL,’F(Mg,w,Y) can be
computed from tp L;(MQ, w, X ); a propositional variable
Y; € @ corresponding to a node y; € Y is always false in
M. From this we can easily compute tpz, g(Ma, w, ) by
forgetting about P.

The computability in the above argument follows from
the observation that all sets involved are finite in size and
the model checking for L, is decidable.

For the second part, let ¢ € CLg(L). We want to decide
whether M, w [= ¢. By the first part, we already know the
sets tpL,@(M7 x;,Y) for all x; € X. Consider the model
checking game P[M, ¢]. In this game, the nodes of the form
(v,Y;) with v € M7 are always losing because Y; € @ is
never true in Ms. It follows that the subgame P[Ma, ¢ is
isomorphic to P[Ms, ¢’], where ¢’ is constructed from ¢ by
replacing all Y; € Q by L. Note that ¢’ € CLp(L), so we
know all optimal partial strategies for (P[Ma, ¢'], (w, "))
because we know tpL’F(Mg, w, X). It follows that the
winner is determined by the remaining sets given in the
theorem. O



4. FPT Algorithms for L, Model Checking

In this section we derive two algorithmic applications of
Theorem 3.7. More precisely, we show that L,-model-
checking is fixed-parameter tractable on any class of
structures of bounded Kelly-width or bounded DAG-width.

Before proving our results, we develop some algorith-
mic concepts common to both proofs. We first need an
algorithmic version of L-equivalence.

In the following, let o be a signature, P be a sequence
of propositional symbols of the appropriate length disjoint
from o and let L € L,[o U P].

A. Weak Separations

Definition 4.1 Let M be a o-structure. A pair (M;, Ms)
of induced substructures is a weak directed o-separation
of M with interface X = (z1,...,zy) if
« V(M) =V(M)UV (M),
« X = {xl, e ,l’k} Q V(Ml) n V(MQ),
o there are no edges from My \ (V(M;) NV (Ms)) to
My \ (V(My) NV (Mz)),
o there are no edges from (V(M;) N V(Mz)) \ X to
V(M) \ V(M) B

Clearly, every directed separation is a weak directed
separation. Weak separations can be transformed into
proper separations by duplicating the nodes outside of
the interface X. This gives us the following theorem.

Theorem 4.2 Let (M, M) be a weak directed separation
of M with interface X. Then there exists a structure M’
and a directed separation (M7, My) of M' with the same
interface X and isomorphz’smim My — M, w2 My —
MY, which are the identity on X such that

tpL’ﬁ(M7 U7y) = tpL7f(M/7 ﬂ-i(v)? Y)
for alli € {1,2} and v € V(M;).

Proof. For i € {1,2}, define 7; and M’ as
v ifveX

{(i,v) ifog X
m1(V(M1)) Uma(V(Ma))
E(M/) = E1 U E2 U Eg,

where, for i € {1,2},

Ei i={(mi(v), mi(w)) | (v,w) € E(M;)}
By i={(m1(v), m2(w)) |
(v,w) € E(M) N (V(My) x V(My))}.
The substructures M, M} of M’ are induced by the sets

V(M) := mi(V(M;)).

K2

Clearly, 7; is an isomorphism between M; and M! and the
identity on X. We also have that (M, M3) is a directed
separation of M’.

12

It is easy to verify that the colored structures dp(M, X)
and Op(M’, X)) are bisimilar. Bisimilarity of these struc-
tures implies

tp, p(M,v,X) = tp, 5(M',mi(v), X

)

for all ¢ € {1,2} and v € V(M;).
Having isomorphisms means that
tp,, 5(Mi, v, X) = tp, 5(M], mi(v), X)

for all v € V(M;).

This and the previous theorem imply that Theorem 3.6
and with appropriate wording also Theorem 3.7 hold for
weak directed separations as well. Let us restate the last
theorem in its more general form.

Theorem 4.3 (Corollary of theorems 3.7 and 4.2)
Let P, Q be sequences of proposition symbols such that
cNP=cnNQ=PNQ=0.

Let L C Lo UP] and M be a structure with a weak
directed o-separation (My, M) with interface X. Let Y €
(V(My) \ V(M) U X)I®Ql be a tuple.

For all v € My, the set tpL@(M, v,Y) depends only on

o« My and Q and
o {(@itp, p(Ma, 00, X)) |21 € X} and

o {(v,tp, p(M,w, X)) | (v,w) € E(M) N (M, x Mg)}.

Provided L is finite, tpL@(M,v,Y) can be computed from
these sets.

Furthermore, for every w € Ms, the set tpL@(M, w,Y)
depends only on the above sets and on tpL7F(MQ7 w, X) and
can be computed from these sets if L is finite.

The only difference of this statement to Theorem 3.7
is that we only require a weak separation and that the
tuple Y should not contain a node v € V(M) NV (Mz)
which is not part of the interface. This last requirement is
necessary because otherwise we would have a color in M,
where there was none before, and the types of My with
respect to X do not carry this information.

B. Kelly-Width

First we consider Kelly-width. We follow the notation and
definitions given in [12]. For a directed acyclic graph (DAG),
we write < for the reflexive and transitive closure of the
edge relation.

Let G be a digraph. A set W C V(G) guards X C V(G)
if WNX =0 and for all (u,v) € E(G) with u € X, we have
v € XUW. For any set W C V(G) we write guard(W) for
the minimal set U C V(G) guarding W.

Definition 4.4 A Kelly decomposition of a digraph G is
a triple D := (D, 3,7), where 3,7 : V(D) — 2V(©) such
that

o Dis a DAG and (3(t))icv(p) partitions V(G),

o for all t € V(D), v(t) guards B} := Ups, B(t') and



o for all s € V(D) there is a linear order <; on
its children so that the children can be ordered as
t1,...,tp such that for all 1 < i < p, y(t;) C
Bls)Ur(s)UlU; Btij. Similarly, there is a linear order
on the roots such that y(r;) € U, Bf,-

The width of D is max {|5(t) U~(¢)| |t € V(D)}. The

Kelly-width of G is the minimal width of any of its Kelly
decompositions. -

Theorem 4.5 There exists an algorithm that solves the
L,, model checking problem in time O(f(k + |¢|) - n¢) for
some computable function f and some constant c, where
k is the Kelly-width and n the size of the input structure,
provided a Kelly decomposition of width at most k is given
as part of the input.

Let G be a structure of Kelly-width k£ and v € V(G). It
is easily seen that, by increasing the Kelly-width by one,
we can always take a Kelly decomposition of G of width

< k + 1 which has only one root and this root contains v.

We call such a Kelly decomposition rooted at v.

Proof of Theorem 4.5. Let G,v be a structure and P be
a sequence of k fresh proposition symbols. We pick an
arbitrary linear order of V(@) in order to define interfaces
consistently.

Let D = (D, 8,7) be a Kelly decomposition of width &
of G rooted at v and ¢ € L,,. We set L := {¢}.

Let us introduce the abbreviation

T(A,B) == { (v,tp, 5(4, v, B)) | v € A}.
We will inductively compute the types
T (B Ur(t), (1))

for all t € V(D). For the leaves, these sets can be computed
by brute force. Let ¢t € V(D) be a node with children

S$1,...,8 and assume that we already know the above
types for all s;.
Let
5 = J(v(s5) N (B(1) U (1)
Jj<t
& =6 Ul JBL.

J<i
We inductively compute the types T (d%,9;). For i = 1 we
already know these types by assumption. Assume i > 1.
We want to construct weak directed separations. Note
that by assumption we know T (B}, U~v(s;),7(s;)). We now
first compute

T(Bi U(8:) Udi1,7(s:) Udi—1).

This is possible because (8;—1, B¢ U~(s;)) is a directed
separation with interface d;—1 N ~y(s;).

Next, we observe that (Bf U~v(s;)Ud;—1,6,_,) is a weak
directed separation with interface d;—1U(y(s;)Nd;—1). Thus
Theorem 4.3 allows us to compute 7 (8}, ;).

13

After the last step we still need to compute T(Bf U
v(t),~(t)) for the parent t. The pair (5(t) U~(t),d;) is a
directed separation with interface ;, which is the final
piece to the proof.

The runtime of this algorithm is O(f(k + |¢|) - n?) for
a function f because |V(D)| < |V(M)|, and we consider
every element ¢ € V(D) at most once. Every computation
of T(BY U~(t),~(t)) requires time at most linear in V(D)
because t has at most that many successors and at most
quadratic in V(M) because all sets involved are of size
linear in V(M). O

C. DAG-width
Next we consider DAG-width [2].

Definition 4.6 A DAG decomposition of a digraph G is
a pair D := (D, (X4)aep) such that

e D is a DAG,

o Usgep Xa =V(G),

e Foralld <d = d//7 XagNXgr € Xy,

o forall edges (d,d') € E(D), XyNXq guards X-qNXy,

where Xtd’ = Ud’-<d” Xd//.

The width of D is max {|X4| | d € V(D)}. The DAG-
width of G is the minimal width of any of its DAG
decompositions. a

Theorem 4.7 There exists an algorithm that solves the
L,, model checking problem in time O(f(k + |¢|) - n¢) for
some computable function f and some constant c, where
k is the DAG-width and n the size of the input structure,
provided a DAG decomposition of width at most k is given
as part of the input.

Proof. Let G, vy be a structure and (D, (Xg)aev(p)y be a
nice DAG decomposition of G. That means (see [2])

1) D has a unique source.

2) Every d € V(D) has at most two successors.

3) For dy,dy,dy € V(D), if dy,ds are two successors of
dop, then Xdo = Xd1 = Xd2~

4) For dy,dy € V(D), if d; is the unique successor of d,
then |(Xd0 \Xdl) U (Xdl \Xdo)‘ =1

We set L := {p}. As in the proof for bounded Kelly
width, we fix an arbitrary linear order < on V(@) so that
we can consistently map nodes to the proposition symbols
P; occurring in the types.

During the run of the algorithm, we fill a table 7 with
indices from the set {(v,d) € V(G) x V(D) | v € X»q4} and
entries that are elements of 77 (P). We will write to every
index in this table at most once during the run, and we
will always make sure to write

T(’U, d) = tpo(G[Xtd], v, Xd)

If d is the root of D, then T (v, d) will answer the model
checking problem G, vq = .

Clearly, we can fill in all values for the leaves d immedi-
ately by computing them directly.



Let d € V(D). If d has two successors dp,d;, then
we have Xy = X4, = Xq,. Then (G[Xyg,), G[Xxq,]) is
a weak directed separation with interface X,;. Because
we already know tp; 5(G[X»q,],v,Xq) for all v and
1 € {0,1}, Theorem 4.3 allows us to compute the types
tpy, 5(G[X-d], v, Xa).

The other case is that d has a unique successor dy. Let
X4 ={v1,...,v;} be ordered by the global linear order <.
If Xg, \ Xq = {v;}, then for all v € X x, we set

T (v,d) = {shrink;(¢) |
¥ € T(v,dp) and P; does not occur in 1},

where shrink;(v) is a function defined inductively over the
structure of formulas with the base case

p;

p;

TR
shrink; (P;) := 1fj i 2

-1

In other words, shrink;(¢) is the formula ¢ with all P;
with j > ¢ replaced by P;_; in order to not leave a hole.
It is easy to check that we have

{shrink;(¢)) | ¥ € T (v,dy) and P; does not occur in 1}
= tpL,F(G[Xtd]a v, Xd)

The last case is Xq\Xq4, = {v;}. Because XqNXg4, guards
Xrd, \ X, all edges (v,v;) € G[X=4] satisfy v € X,.

This means we have in fact a directed separa-
tion (G[Xq4],G[Xxq,]) with interface Xg4,. We know
G[X4] (its size is small), and we know the types
tpy 5(G[Xra0), v, Xa,) for all v € Xy x,, .

By Theorem 3.7, this is all the information we need
to compute tpLP(G[Xtd],v,Xd) for all v € X~ x,, which
completes the algorithm and the proof. O

5. Conclusion

We proved a decomposition theorem for the modal u-
calculus. This theorem, interesting already all by itself,
further allowed us to prove fixed-parameter tractability
results for the L, model checking problem on classes of
bounded Kelly-width or bounded DAG-width.

Open questions arise from the diverse number of decom-
positions for directed graphs. In particular, we think it
could be promising to analyze D-width [20] and directed
tree-width [13].

References

[1] Janos Barat. Directed path-width and monotonicity in digraph
searching. Graphs and Combinatorics, 22(2):161-172, 2006.

[2] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan
Kreutzer, and Jan Obdrzalek. The dag-width of directed graphs.
J. Comb. Theory, Ser. B, 102(4):900-923, 2012.

Dietmar Berwanger, Erich Gradel, Lukasz Kaiser, and Roman
Rabinovich. Entanglement and the Complexity of Directed
Graphs. Theoretical Computer Science, 463(0):2-25, 2012.

(3]

14

[4

[5]

[6]

[7

8

[9

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]
(18]
(19]

20]

(21]

(22]

(23]

Julian Bradfield and Colin Stirling. Modal mu-calculi. In Patrick
Blackburn, Johan Van Benthem, and Frank Wolter, editors,
Handbook of Modal Logic, volume 3 of Studies in Logic and
Practical Reasoning, pages 721 — 756. Elsevier, 2007.

Bruno Courcelle. Graph rewriting: An algebraic and logic
approach. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 2, pages 194 — 242. Elsevier, 1990.
Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear
time solvable optimization problems on graphs of bounded clique-
width. Theory of Computing Systems, 33(2):125-150, 2000.
Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Springer, 1998.

Solomon Feferman and Robert L. Vaught. The first-order
properties of algebraic systems. Fundamenta Mathematicae,
47:57-103, 1959.

Jorg Flum and Martin Grohe. Parameterized Complezity Theory.
Springer, 2006. ISBN 3-54-029952-1.

Erich Gréadel, Wolfgang Thomas, and Thomas Wilke, editors.
Automata, Logics, and Infinite Games: A Guide to Current
Research, volume 2500 of LNCS. Springer, 2002.

Martin Grohe and Stephan Kreutzer. Methods for algorithmic
meta-theorems. Contemporary Mathematics, 588, American
Mathematical Society 2011.

Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly
decompositions, games, and orderings. Theor. Comput. Sci.,
399(3):206-219, 2008.

Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin
Thomas. Directed tree-width. J. Comb. Theory Ser. B, 82(1):138—
154, May 2001.

Marcin Jurdzinski. Deciding the winner in parity games is in
UP N co-UP. Inf. Process. Lett., 68(3):119-124, 1998.
Mamadou Moustapha Kanté. The rank-width of directed graphs.
CoRR, abs/0709.1433, 2007.

Ken-ichi Kawarabayashi and Stephan Kreutzer. An excluded
grid theorem for digraphs with forbidden minors. In ACM/SIAM
Symposium on Discrete Algorithms (SODA), 2014.

Johann A. Makowsky. Algorithmic uses of the feferman-vaught
theorem. Ann. Pure Appl. Logic, 126(1-3):159-213, 2004.

Jan Obdrzalek. Fast mu-calculus model checking when tree-
width is bounded. In CAV, pages 80-92, 2003.

Jan Obdrzilek. Clique-width and parity games. In Computer
Science Logic (CSL), pages 54-68, 2007.

Mohammad Ali Safari. D-width: A more natural measure
for directed tree width. In Joanna Jedrzejowicz and Andrzej
Szepietowski, editors, MFCS, volume 3618 of Lecture Notes in
Computer Science, pages 745-756. Springer, 2005.

Robert S. Streett and E. Allen Emerson. An automata theoretic
decision procedure for the propositional mu-calculus. Inf.
Comput., 81(3):249-264, 1989.

Julia Zappe. Modal p-calculus and alternating tree automata.
In Grédel et al. [10], pages 171-184.

Wieslaw Zielonka. Infinite games on finitely coloured graphs
with applications to automata on infinite trees. Theor. Comput.
Sci., 200(1-2):135-183, 1998.



	1 Introduction
	2 A Decomposition Theorem for L_mu
	2-A Syntax and Semantics of the Modal mu-Calculus
	2-B A Notion of Formula Depth for the mu-Calculus
	2-C Decompositions of Directed Separations

	3 Proof of the Decomposition Theorem
	3-A Parity Games
	3-B Profiles and Types
	3-C Definable Profiles
	3-D A Small Parity Game
	3-E Proof of the Decomposition Theorem

	4 FPT Algorithms for L_mu Model Checking
	4-A Weak Separations
	4-B Kelly-Width
	4-C DAG-width

	5 Conclusion
	References

