
Forest expressions

Miko laj Bojańczyk

Warsaw University

Abstract. We define regular expressions for unranked trees (actually,
ordered sequences of unranked trees, called forests). These are compared
to existing regular expressions for trees. On the negative side, our expres-
sions have complementation, and do not define all regular languages. On
the positive side, our expressions do not use variables, and have a syntax
very similar to that of regular expressions for word languages.
We examine the expressive power of these expressions, especially from
a logical point of view. The class of languages defined corresponds to a
form of chain logic [5, 6]. Furthermore, the star-free expressions coincide
with first-order logic. Finally, we show that a concatenation hierarchy
inside the expressions corresponds to the quantifier prefix hierarchy for
first-order logic, generalizing a result of Wolfgang Thomas [4].

1 Introduction

We define a new type of regular expressions for forests, i.e. ordered sequences of
unranked trees. Like word regular expressions and unlike the known tree regular
expressions, our expressions do not use variables. Similar to CTL*, we have two
sorts of expressions: one describing forests, and one describing contexts (forests
with a hole, which can be used for substitution). The two sorts are defined by
mutual recursion, and each allows concatenation, star, and boolean operations
(including complementation and intersection). Forest expressions do not capture
all regular languages of unranked forests (or even trees), but they do have a
characterization in terms of logic:

Theorem 11

Forest expressions have the same expressive power as extended chain logic. Star-
free forest expressions have the same expressive power as first-order logic.

In the above theorem, the models for the logic are forests. The signature has
label tests, and two partial orders: vertical and horizontal. The vertical order
corresponds to descendants, and the horizontal order is used to say when one
sibling is to the left of another. Extended chain logic is a fragment of MSO, where
set quantification is restricted to two types of sets: chains (sets linearly ordered
by the vertical order) and sibling sets (sets linearly ordered by the horizontal
order). Over binary trees, the second quantification is superfluous, and the logic
collapses to chain logic as defined by Thomas in [5]. The second statement in
the above theorem can be seen as a tree extension of [3], where it is shown that
star-free word expressions have the same expressive power as first-order logic.

Furthermore, we show that the correspondence between the quantifier alter-
nation hierarchy, and the concatenation hierarchy, which has been shown for
words by Thomas in [4], also works with our expressions:

Theorem 12

A forest language is on level n1/2 if and only if it is defined by a sentence in Σn.

This result is the second main contribution of this paper.

2 The regular expressions

In the formal syntax of expressions, there will be two sorts of expressions, one
for forests and one contexts. Before we present this syntax in Definition 21, we
will gradually introduce the operations allowed in the expressions.

We use + to denote concatenation of forests (sequences of trees); while ∨ is
used in the regular expressions for language union (likewise ∧,¬ for intersection
and complement). For instance, both the expressions

a(a+ a) ∨ a(a) a((a+ a) ∨ a)

denote the same language containing two trees:

a

a a

a

a

Concatenation of trees can be iterated using the Kleene star; for instance the
expression

a((a ∨ b)∗)

denotes all trees of depth at most two that have a in the root and a, b in the leaves.
If we want to define languages of unbounded tree depth, we must also have some
form of vertical iteration. Here, we use iteration of contexts, i.e. forests with a
single hole. The hole is denoted by �, and is used for substitution. For instance,
the set of a-labeled trees that have a single leaf is defined by the expression:

(a�)∗a .

Context composition is written multiplicatively, for instance (aa�)∗a denotes
trees with a single path of odd length.

The kind of a subexpression can be determined by the way it is used in the
larger expression: if it is an argument of + then it must be a forest expression, if
it is an argument of the multiplicative context concatenation, then it must be a
context expression. The only possible ambiguity is when the expression does not
contain forest concatenation or context composition, eg. a∨ (¬b); by convention
we assume the expression describes forests and not contexts.

Even with the two Kleene stars (for forests and contexts); our expressions
cannot define trees with a large amount of branching. In particular, the set of

2

all trees cannot be defined. Therefore, as in star-free word languages, the key to
success is judicious use of complementation. As usual with complementation, it
is important that an alphabet A is specified beforehand; let us fix A = {a, b} for
the next several examples. For instance, a(¬∅) defines the set of all trees over A
that have a in the root (by convention, ∅ is the empty forest – and not context
– language).

We have already discussed concatenation and Kleene star for forests and
contexts, and the boolean operations. We have also implicitly embedded forests
within contexts, for instance in (a�)∗a we have embedded the forest a in the
context (a�)∗. The last remaining operation is one that embeds a forest within
a context; we use + to add a context to a forest, with the result being a context.
For instance,

¬∅ + � + ¬∅

denotes all contexts where the hole is at the root. In particular,

(

(a� ∨ b� ∨ (¬∅ + � + ¬∅)
)∗

denotes all contexts. An equivalent expression would be (� ∧ ¬�). Using this
expression and complementation, we can define all contexts where only the letter
a occurs.

Below is the formal definition of the expressions:

Definition 21 The syntax of forest and context expressions over an alphabet
A is defined by the following grammar:

F → ∅ | ǫ | a | F + F | F∗ | CF | F ∨ F | F ∧ F | ¬F

C → � | a� | CC | F + C | C + F | C ∨ C | C ∧ C | ¬C

In the above, a stands for any letter in the alphabet A. An expression is called
star-free if it does not use the productions F∗ or C∗.

The semantics have already been defined in the discussion leading to the
above definition. We only omitted ǫ, which stands for the empty forest. To avoid
excess parentheses, we assume the following binding precedence order: context
composition, +, ¬, ∧ and finally ∨.

Note that Definition 21 contains some redundant rules. For instance, F ∧G
is equivalent to ((F + �) ∧ (G+ �))ǫ. However, we choose to keep all the rules
to have a more convenient notation.

Before continuing with our discussion of these expressions, we would like to
comment on complexity issues. Emptiness of a forest expression is EXPTIME
hard; by encoding computations of an alternating polynomial space Turing ma-
chine. A matching EXPTIME upper bound can be found by compiling an ex-
pression into a bottom-up automaton with an exponential state space. Model-
checking, on the other hand, is polynomial: one can check in polynomial time if
a given forest belongs to a given forest expression by using a dynamic algorithm.

3

2.1 Comparison with existing expressions

The regular expressions usually considered for trees, see eg. Chapter 2 of [2], are
different from our expressions in that:

1. They use arbitrarily many types of hole �1, . . . ,�n (instead of one �).
2. The contexts can have holes of different types, and with multiple copies.
3. There is no negation or intersection.

Another difference is that we consider unranked trees instead of ranked trees,
but the definitions from [2] can be adapted to the unranked setting, with similar
results. The differences 1,2 can be seen as advantages of our expressions, while
the difference 3 is a disadvantage. Another disadvantage is that our expressions
cannot define all regular languages, as opposed to the standard expressions.
For instance, the language “positive boolean expressions that evaluate to true”
is not definable via our forest expressions (otherwise, this language would be
definable in chain logic, which it is not), while it can be done using even with
one type of hole, but with multiple copies of this hole. We present this expression
below, to give the reader a taste of the expressions with many holes. We use the
alphabet {OR,AND, 0, 1} here to avoid confusion with ∨,∧ found in the syntax
of expressions. The following expression describes all forests of properly formed
expressions, possibly with some holes left:

E = (OR� ∨ AND� ∨ 0 ∨ 1 ∨ � + �) .

The following expression denotes contexts that take 1 to 1 (i.e. will give a result
of 1 if all holes are substituted by 1):

F ∗ where F = AND(�∗) ∨ OR((E ∨ �)∗ + � + (E ∨ �)∗) .

Every true positive boolean expression can be decomposed as F ∗1.
It should be remarked here that our forest expressions are not meant to

replace the standard regular expressions with many holes. We only claim that
they have a convenient syntax and, most importantly, disallowing multiple holes
gives a close correspondence to logic, as witnessed by Theorems 11 and 12.

3 Forest automata

We denote forests by letters s, t, with forest concatenation denoted by s + t.
We denote contexts by letters p, q, r, with context composition written multi-
plicatively as pq. The result of placing a forest s in the hole of a context p is
denoted by ps. We use the standard relationships of nodes in a forest/context:
descendant, ancestor, child, parent, sibling, leftmost sibling, rightmost sibling,
left neighbor (closest sibling to the left), right neighbor.

Recall that a monoid is a set H along with an associative operation, which
we denote here by + to underline the connection with forest concatenation.
Furthermore, each monoid has a unit element ǫ ∈ H, which satisfies ǫ + h =

4

h+ ǫ = h for all h ∈ H. We will denote monoids by F,G,H and their elements
by f, g, h (there are two justifications here: first, we want to avoid confusion with
trees s, t, u; second we want to be consistent with notation in forest algebra,
see [1]). A monoid forest automaton is a deterministic word automaton where
the states have a monoid structure. In other words, the automaton has two
components: a finite monoid H and a function δ : A ×H → H, where A is the
label alphabet. The automaton assigns to each forest t a unique element A(t) of
H; called the value of the forest. The empty forest is assigned the unit of the
monoid, while for larger forests we have:

A(t+ s) = A(t) + A(t) A(a(t)) = δ(a,A(t)) .

In the above, the left + is forest concatenation, while the right + is the monoid
operation. Thanks to associativity, the above definition is nonambiguous. The
automaton recognizes a language L if membership in L only depends on the
value of a forest. From now on, we will only be using monoid forest automata;
and we will simply call them forest automata.

Let A = (H, δ) be a forest automaton, and let g, h ∈ H. We say a context p
takes g to h if there is some forest s with value g such that ps has value h. Note
that in the above we could have equivalently written “for any forest with value
s”.

Definition 31 We say a forest automaton A = (H, δ) is represented by expres-
sions if for all possible values g, h ∈ H

– There is an forest expression Lh describing forests with value h.

– There is a context expression Lh
g describing contexts p that take h to g.

A forest language L is represented by expressions if some forest automaton
recognizing L is. Clearly, a language represented by expressions can be defined
by a forest expression: it suffices to take the union of Lm for all values m of
forests in the language. Furthermore, the proof of Theorem 11 also gives the
converse: if a language is defined by an expression, then its also represented by
expressions.

4 Equivalence with first-order logic

It is fairly easy to show the left to right inclusions from Theorem 11: extended
chain logic and first-order logic can capture forest expressions and star-free ex-
pressions, respectively. We only give the proof of the more difficult right to left
inclusions here.

Proposition 41 Forest languages definable in first-order logic can be repre-
sented by expressions.

5

The proof of this proposition is rather standard and proceeds by induction
on the formula of first-order logic. Later on in the paper, we present a stronger
result, however we include the below proof since it is significantly shorter.

To go through the induction step, we need to prove the statement also for
formulas with free variables. A formula

ϕ(x1, . . . , xn)

with free variables x1, . . . , xn can be seen as a forest language L(ϕ) over an
extended alphabet A× {0, 1}n:

t ∈ L(ϕ) iff t, ν |= ϕ ,

where ν is the valuation that assigns to xi the unique node with 1 on the i-
th {0, 1} coordinate. (If the forest has 0 or at least 2 nodes with 1 on a given
coordinate, the valuation ν is undefined and therefore t, ν |= ϕ cannot hold.)

The proof of Proposition 41 is a rather standard induction on the size of the
formula ϕ. The only nontrivial step is when passing from ϕ to ∃x.ϕ (we eliminate
∀ using negation). Let then A = (H, δ) be an automaton recognizing a forest
language L over an alphabet A×{0, 1}. We need to show that if A is represented
by star-free expressions, then so is an automaton recognizing the language

K = {t : t[x] ∈ L for some node x of t} .

In the above, t[x] is the forest over over A×{0, 1} obtained from t by adding
label 1 on the second coordinate of the node x, and label 0 for the remaining
nodes. We first define a forest automaton B that recognizes the language K;
then we will show star-free expressions that represent this automaton. The value
under B of a forest in t is a pair (h,G). The first coordinate is the value (in A)
of t[∅], while the second coordinate is the set of values (in A) of forests t[x] for
all possible nodes x. The reader will easily fill in the monoid operation on states
of B, and its transition function.

We need to show that the automaton B is represented by star-free expressions.
First, we will define some auxiliary star-free expressions. We begin by describing,
for every g, h ∈ H, the forests and contexts where the node x is not present:

– Kh is a star-free forest expression describing forests t over A where t[∅] has
value h.

– Kh
g is a star-free context expression describing contexts p over A where p[∅]

takes g to h.

These star-free expressions are easily obtained from the star-free expressions
representing the automaton A, by writing a ∈ A instead of (a, 0), (a, 1) and then
intersecting with a language that forbids labels of the form (a, 1). Next, we write
for each g, h ∈ H star-free expressions that describe forests and context where
the node x is present. These are defined by distinguishing the node x:

6

– Lh is star-free forest expression describing forests t over A where t[x] has
value h, for some node x of t. This is the union of star-free expressions

Kh
g aKf

over a ∈ A and f, g ∈ H that satisfy δ((a, 1), f) = g
– Lh

g is a star-free context expression describing contexts p over A where p[x](t)
takes g to h. This is the union of star-free expressions

Kh
f aK

f ′

g

over a ∈ A and f, f ′ ∈ H that satisfy δ((a, 1), f ′) = f .

Once the auxiliary star-free expressions have been found, the star-free ex-
pressions defining the automaton B can be easily obtained by using boolean
combinations. The forests that have value (h,G) are described by the star-free
expression:

Lh ∩
⋂

g∈G

Kg \
⋃

g 6∈G

Kg ,

while the contexts that take the automaton from value (f, F) to value (h,G) are
described by the star-free expression:

Lh
f ∩

⋂

g∈G

(

Kg
f ∪

⋃

g′∈F

Lg
g′

)

\
⋃

g 6∈G

(

Kg
f ∪

⋃

g′∈F

Lg
g′

)

.

5 Equivalence with chain logic

Proposition 51 Forest languages definable in extended chain logic can be rep-
resented by expressions.

The proof is similar to the one in the previous section. We only comment on
chain quantification, denoted here by ∃cX ϕ; quantification over sibling sets is
done in a similar manner.

Similar to the notation in Section 4, if t is a forest over A, and X is a set of
nodes in X, then t[X] is the forest over over A×{0, 1} obtained from t by adding
label 1 on the second coordinate of nodes in X, and label 0 for the remaining
nodes. If L is a forest language over A × {0, 1}, the chain projection is defined
to be the set of forests t such that t[X] belongs to L for some chain X. The
language defined by ∃cXϕ is the chain projection of the language defined by ϕ.

The inductive step in Proposition 51 that goes from ϕ to ∃cϕ will follow
once we show that languages represented by expressions are closed under chain
projection. The proof of this closure is similar to the one in Section 4. We only
sketch a key step, leaving the remaining details to the reader. In the following,
A = (H, δ) is a forest automaton over the alphabet A×{0, 1} that is represented
by expressions.

7

A set of nodes X in a context p is called a p-chain if all of its elements are
ancestors of the hole in p. We say a context over A chains g ∈ H to h ∈ H if
there is some p-chain X such that the context p[X] takes g to h. The following
statement is the key step in showing closure under chain projection, the rest of
the proof is left to the reader:

Lemma 1. For every g, h ∈ H, the set of contexts over A that chains g to h is
described by context expression.

Proof

The proof proceeds in two steps.
In the first step, we write a forest expression for “small” contexts that chain

g to h. We will denote this language by Kh
g . A “small” context is of the form:

s+ a� + t ,

where a ∈ A is a label and s, t are forests over A. This context chains g to h if
and only if for some i = 0, 1 we have

f + δ((a, i), g) + f ′ = h , (1)

where f, f ′ ∈ H are the values under A of the trees s[∅], t[∅]. Recall that δ :
(A× {0, 1}) ×H → H is the transition function in the automaton A; therefore
the parameter i specifies if the chain contains the a node or not. Therefore, the
set of“small”contexts that chain g to h is the (finite) union of context expressions

Lf + a� + Lf ′

such that for some i = 0, 1, condition (1) is satisfied. Here Lf (likewise for Lf ′)
is the language of forests s such that s[∅] has value f in A; this language has a
forest expression by assumption on A being fully defined by forest expressions.

We now proceed to the second step. We will only describe an expression for
contexts where the hole has no siblings; the more general case can be easily
obtained using techniques as above. Contexts that chain g to h and have no
siblings of the hole can be described by composing small contexts:

⋃

{Kfk

fk−1
K

fk−1

fk−2
· · ·Kf3

f2
Kf2

f1
: g = f1, . . . , h = fk} .

Although the above is an infinite expression, it can be easily rendered finite using
the Kleene star. �

6 Concatenation hierarchy

In this section, we show that our expressions admit a hierarchy similar to the
concatenation (Straubing) hierarchy for word languages. Also similar to the word
case, this hierarchy coincides with the quantifier hierarchy of first-order logic with
order.

8

In the context of forest and context expressions, the name concatenation
hierarchy would be confusing, since we have two types of concatenation: forest
concatenation and context composition. To make things even more confusing,
the role of language concatenation in the word concatenation hierarchy is played
here by context composition, and not forest concatenation. Therefore, below we
refrain from using the name concatenation hierarchy.

The definition below is for a hierarchy of context languages. The hierarchy
is extended to forest languages by substituting the empty forest ǫ for the hole: a
forest language L is said to be on level n (or n1/2) if there is a context language
K on level n (or n1/2) such that L = {pǫ : p ∈ K}.

We fix an alphabet A.

– Level 0 of the hierarchy contains two context languages: the set of all contexts
over A, and the empty set.

– Level n1/2 of the hierarchy is defined as follows.

1. Every context language on level n is on level n1/2.
2. Context languages on level n1/2 are closed under finite union.
3. If a ∈ A,K is a context language on level n1/2 and L is a context language

on level n, then LaK is a context language on level n1/2.
4. If L is a forest language of level n1/2, and K is a context language of

level n1/2, then K + L and L+K are context languages of level n1/2.

– Level n+ 1 is the boolean closure of level n1/2.

The above definition is the same as for word languages, except for clause 4,
which introduces branching into the expressions. Clearly each language in the
hierarchy—both for forests and contexts–can be described by a star-free expres-
sion. The hierarchy for words can be recovered by taking context languages, and
looking at the word that labels the path from root to hole.

Recall that Σn is the class of existential first-order formulas—possibly with
free variables—whose quantifier prefix has n − 1 alternations. For instance, Σ2

are the formulas with quantifier prefix ∃∗∀∗. Over words, a result of Thomas [4]
shows that Σn defines the same languages as level n1/2 (the signature contains
the linear order < on word positions, but not the successor relation x = y + 1).

We want to have the same result. However, we need to be careful about the
picking the correct signature. We cannot have only the descendant order on tree
nodes, since this would give commutative languages; while the forest concatena-
tion K + L gives non-commutative languages already on level 1/2. Furthermore,
the hierarchy is sensitive to slight changes in the signature. For instance, the
language “the root has label a” will be on level Σ1 if the signature contains the
“root” unary relation; however if the “root” relation is dropped this language
moves up to level Σ2.

We chose two relations: the lexicographic order ⊑ and the greatest common
ancestor gca(x, y) = z. The descendant order x ≤ y can be defined in terms
of gca without using quantifiers, since y is a descendant of x if and only if
gca(x, y) = x. However, to define gca in terms of the descendant, we need a
universal quantifier, to enforce minimality. Therefore, the quantifier alternation

9

hierarchies are different for the signatures {gca,⊑} and {≤,⊑}. From now on, we
will be using the signature {gca,⊑} when talking about the quantifier hierarchy.

We repeat the statement of our result relating the hierarchies in expressions
and logic:

Theorem 12

A forest language is on level n1/2 if and only if it is defined by a sentence in Σn.

We present the two implications in the next two sections. A consequence of
the above theorem is that expressions on level n1/2 are closed under intersection,
which is not immediately apparent from the syntax. Another consequence is
Proposition 41, since every first-order formula can be found on some level Σn.

It will be convenient to have a notion of formulas describing contexts. Here
a formula for contexts has the same syntax as a formula for forests; except that
there is a free variable x, which corresponds to the hole. The formula describes
those contexts where it holds under the valuation that maps x to the hole. For
instance, the formula ∀y x = y is true only in the empty context, which maps
every forest to itself. The hierarchy Σn is defined for context formulas in the same
way as for forest formulas. The correspondence in Theorem 12 also extends to
contexts.

Level n1/2 is definable in Σn+1 The proof is by induction, first on n and
then on the size of the expression. The induction base of n = 0 is fairly simple,
and we omit the details.

The key step is to show how to construct formulas for the steps LaK and
L+K in the definition of level n1/2.

The step for LaK is a simple relativization technique, and works the same
way as for words. Let then a ∈ A, and let L,K be context languages of levels n
and n1/2 respectively. We will write a formula of Σn+1 that defines the context
language LaK. By induction assumption, there are formulas ϕ(x) ∈ Σn, ψ(x) ∈
Σn+1 for the languages L,K. The language LaK is defined by the formula

∃y a(y) ∧ ϕ′(y) ∧ ψ′(x) ∈ Σn+1 .

Here ϕ′ is obtained from ϕ by relativizing every quantifier ∃z to ∃z 6≥ y; similarly
for ψ′ and z > y. Note that the descendant order ≤ is definable in terms of gca
without quantifiers, so this relativization does not change the position in the
hierarchy.

The case of L + K requires a little more attention. Let then L be a forest
language defined by Σn+1 formula ϕ, and let K be a context language defined
by a Σn+1 formula ψ. We will write a formula for L + K (the case of K + L is
done the same way), and we also want to use relativization. However, the node
that divides L from K must be on the root: we use the leftmost root node x of
K here (this node is lexicographically the first one in K). The formula is:

∃x (∀y gca(x, y) = y ⇒ x = y) ∧ ϕ′ ∧ ψ′ ∈ Σn+1 .

10

The first conjunct says that x is one of the roots; the universal quantifier in this
conjunct does not increase the hierarchy level of the larger formula, since we
are working at or above level Σ2 (recall that the base case of n = 0 was done
separately). The relativized formulas are defined as in the previous case, only
this time we use the lexicographic order.

Formulas in Σn+1 are captured by level n1/2 As a warm-up, we do the
case of n = 0. Let then

ϕ = ∃x1, . . . , xkψ

be a formula, with ϕ quantifier-free. By choice of signature, ϕ can only say what
is the lexicographic order on the nodes x1, . . . , xk, and which quantified nodes
are greatest common ancestors of other quantified nodes. The basic idea is that
in a forest of the form pa(s + t), with p a context, a a label, and s, t forests,
the greatest common ancestor of a node from s and a node from t must be the
node a. The lexicographic order can also be expressed, since the expressions are
ordered. We only present the construction on an example:

∃x, y, z a(x) ∧ b(y) ∧ c(z) ∧ gca(x, y) = z

Since the labels a, b, c are different, the nodes x, y, z are different. The appropriate
expression is:

Kc((KaKǫ) + (KbKǫ)) ∪ Kc((KbKǫ) + (KaKǫ)) .

In the above, K is the level 0 expression describing all contexts.
We would like to continue along these lines for the classes Σ2, Σ3, etc. Unfor-

tunately we run across a technical problem, which does not occur for words, and
makes the proof rather tedious. If we have nodes x1, . . . , xk in a word w (say,
ordered from left to right), then these partition the word into words of the form
w[0..x1], w[x1 + 1..x2], . . . , w[xk−1 + 1..xk]. Unfortunately, this is no longer the
case for forests.

A first obstacle is how to use two nodes x, y to cut out a piece from a larger
forest. If we want to cut out a forest, it would be reasonable to expect the two
nodes x, y to be siblings; but the sibling relationship is not quantifier-free in our
signature. A second problem is that a given set of nodes may not partition a
forest: for this the set must satisfy certain closure properties (such as containing
greatest common ancestors).

We write x � y to denote that x is a sibling to the right of y; this formula
needs a universal quantifier (to say that all ancestors of x are also ancestors
of y) and therefore is a negation of a Σ1 formula. Note that this is not the
lexicographic order. A formula x � y is called a forest link. The ideas that the
nodes x, y can be used to induce a subforest. If x = y then the induced subforest
contains proper descendants z of x; if x ≺ y then the induced subforest contains
nodes z that lexicographically between x, y, but are not descendants of x. A
formula x < y is called a context link. Similarly to forest links, the nodes x, y

11

induce a context: the nodes of this context are nodes z with x < z and y 6≤ z, and
the hole is in y. We will use letters α, β to refer to links, be they context or forest.
In either case, the property that z belongs to to the induced forest/context of a
link α is expressed by a quantifier-free formula in x, y, z.

Types

Let X be set of variables. A pre-type over X is a conjunction, which for
every variables x, y, z ∈ X specifies the label of this variable, and which of the
following hold, and which do not hold: x is a leftmost sibling, x is a rightmost
sibling, x ≤ y, x � y, x is a child of y, x is the left neighbor of y, z is the greatest
common ancestor of x, y. Since a pre-type specifies all this information, it makes
sense to write “a node x ∈ τ has a child in τ”—likewise for the other relations
described in a pre-type—with the meaning being that x ∈ X and for some node
y ∈ X, the pre-type τ specifies that y is the child of x. Note that a pre-type is a
boolean combination of Σ1 formulas, since universal quantification is necessary
to talk about left/right siblings, etc.

Take a link α—either a forest link x � y or a context link x < y. A type local
to α is a type τ ∋ x, y where every variable z ∈ τ distinct from x, y is in the
(forest/context) induced by α. Furthermore, we require the saturation properties
listed below; these ensure that the nodes induced by α can be partitioned into
links (both context and forest) given by variables from τ .

– If z1, z2 ∈ τ are distinct siblings, but not siblings of x and y (possible only
when α is a forest link), then the parent of z1, z2 belongs to τ .

– If z ∈ τ has its parent in τ , then its leftmost, rightmost siblings are in τ .
– If z1, z2 ∈ τ are not related by the descendant relation, then there are siblings
z′1, z

′
2 ∈ τ that are ancestors of z1, z2, respectively.

A consequence of the properties above is that nodes described by a type τ are
closed under greatest common ancestor, as long as this greatest common ancestor
stays within the link α.

Below we define the joints of type τ . The idea is that these are context/forest
links that are closest to each other and contain some nodes in their induced
forest/context.

– Let x, y ∈ τ be such that y is a descendant of x, and minimal for this
property. If y is not a child of x, then x < y is called a (context) joint of τ .

– There are two kinds of forest joints. If x, y ∈ τ are distinct siblings, with no
sibling from τ strictly between them, then x ≺ y is a forest joint of τ . Also,
if x ∈ τ has no proper descendants in τ , then x � x is a joint of τ .

The saturation properties in the definition of a type are chosen so that the
joints partition a type, i.e.:

Lemma 2. Let τ be a type local to a link α. The type τ entails that any node in
the (context/forest) induced by α is either one of the nodes from τ , or in exactly
one (context/forest) induced by a joint of τ .

12

Proof

Using the saturation properties. We consider here the case when α = x � y. Let
then z be a node not in the forest induced by the link x � y. Assume furthermore
that z is not equal to one of the nodes from τ . Consider two cases:

– There are siblings of z in τ . We claim that there are nodes z1, z2 ∈ τ with
z1 ≺ z ≺ z2. If x ≺ z ≺ y then we are done. Otherwise, since z has siblings
in τ , then the parent of z belongs to τ thanks to the saturation properties.
This entails that also the leftmost and rightmost siblings of z belong to τ .
Let then z1, z2 ∈ τ be such that z1 ≺ z ≺ z2, and chosen closest to z for this
property. Therefore, z1 � z2 is a joint of τ , and its induced forest contains z.

– There are no siblings of z in τ . First we claim that z has an ancestor in τ . If
x is an ancestor of z, we are done. Otherwise, x and z are incomparable by
the descendant relation, and therefore by the saturation properties, τ must
contain siblings that are ancestors of x, z, which concludes the claim. Let
z′ be the ancestor in τ that is closest to z. If z has a descendant z′′ in τ ,
then z belongs to the context induced by z′ < z′′, if z′′ is taken closest to z.
Otherwise, we show that z′ has no descendants in τ , and hence z belongs to
the forest induced by the link z′ � z′. Assume for the sake of contradiction
that τ contains a descendant z′′ of z′ that is not a descendant of z. By
definition of z′, z′′ must be incomparable with z. Using the last saturation
property, we get a node in τ that is strictly between z′ and z, a contradiction.

�

Let X be a set of variables, and let α be a link (using variables from X). A
type local to α generated by X is defined to be any type τ local to α over variables
Y ⊇ X that is minimal for this property: i.e. there is no type σ local to α over
variables Z, with X ⊆ Z (Y such that τ and σ are consistent. If τ is generated,
then Y \ X is called the set of auxiliary variables of τ , and is denoted by Yτ .
The idea is that the variables in Yτ are used to add the saturation properties
required in a type. Since the saturation properties require adding at most a
linear number of additional nodes, there are finitely many nonequivalent types
generated by a given set X and a link α; furthermore any two nonequivalent
ones are inconsistent.

Normal form

A formula is said to be local to a link α if its quantified and free variables are
relativized to nodes induced by the link α. Let α be a link. We define two types
of normal form: (n−1/2, α)-normal form, which corresponds to Σn formulas local
to α, and (n, α)-normal form, which corresponds to boolean combinations of the
former. We define (0, α)-normal form to be all quantifier-free formulas local to
α. For n ≥ 1, a formula is said to be in (n− 1/2, α) normal form if it is a positive
boolean combination of formulas ∃x1, . . . , xkψ, with ψ in (n−1, α) normal form.
A formula—with free variables X—is in (n, α)-normal form if it is of the form
∃y1, . . . , yk τ ∧ ψ, where

– τ is a type local to α generated by X with auxiliary variables y1, . . . , yk. To
abbreviate the notation, we write ∃y1, . . . , yk as ∃Yτ .

13

– For some joint β of τ , the formula ψ is either in (n− 1/2, β)-normal form, or
a negation thereof.

Lemma 3. For n ≥ 1, every formula in Σn local to α is equivalent to a formula
in (n− 1/2, α) normal form.

Proof

The proof is a by induction on n. The only nontrivial part is showing that
positive boolean combinations of formulas in (n, α)-normal form are closed under
negation. By De Morgan laws, we only need to do the negation of a single formula:

¬(∃Yτ τ ∧ ψ) ⇐⇒ (∃Yτ τ ∧ ¬ψ) ∨
∨

σ

(∃Yσ σ ∧ true) ,

where the disjunction above ranges over the—finitely many—types σ generated
by X that are inconsistent with τ .

The case of existential quantification, which corresponds to going from (n, α)
normal form to (n + 1/2, α)-normal form, is a straightforward consequence of
Lemma 2. �

From normal form to expressions

We will now rewrite a formula in (n1/2, α) normal form into an expression on
level n1/2. The expression will be a context or forest expression, depending on the
kind of link α. It will be convenient to use an intermediate form, where logical
formulas and regular expressions can be mixed. For this purpose we extend first-
order logic with the following type of formulas as follows. Let α = x < y be
a context link. If K is a context expression, then Kα(x, y) is a formula. This
formula holds if K contains the context induced by α. The definition for a forest
link x � y and a forest expression L is analogous. Together with Lemma 3, the
following result concludes the “if” part of Theorem 12.

Lemma 4. Let n ≥ 0. Let α = x < y be a context link, and let ϕ be a formula
in (n1/2, α) normal form. There is a context expression K of level n1/2 such that
ϕ and Kα(x, y) are equivalent. Likewise for forests.

Proof (Sketch)
Induction on n, with plenty case analysis. The base case n = 0 is done as in the
beginning of this section. We only do the induction step for a context link x < y,
leaving the proof for forests to the reader. Let then n ≥ 1. Since the expressions
are closed under union, and types are either equal or inconsistent, we only need
consider a formula ϕ be of the form:

ϕ = ∃x1, . . . , xk τ ∧ ψ ,

with τ a type over variables x1, . . . , xk, x, y and ψ a conjunction of formulas in
(n− 1/2, β) normal form (or their negations), with β ranging over joints of τ .

Using the induction assumption, we may replace ψ be a conjunction
∧

β Kβ ,
where β ranges over joints of τ , and each Kβ is a forest or context expression

14

of level n, depending on the kind of β. (Recall that expressions of level n are
closed under boolean combinations, so we need not bother with the negations in
conjuncts in ψ.)

The proof then proceeds via a second induction, this time on the number of
variables k. Recall the link α = x < y to which the formula ϕ is local. The proof
is a case analysis. We only consider here the case when τ contains the parent
of y, but not the grandparent of y. Let then x1 ∈ τ be the parent of y, and let
x2 < x1 be the closest ancestor of x1 that is in τ . We leave to the reader the
special cases when x1 = x, and therefore x2 is undefined, and also when y is
either a leftmost or rightmost sibling. Let then

z1 ≺ · · · ≺ zi ≺ y ≺ z′1 ≺ · · · ≺ z′j (2)

be all the distinct siblings of y given in the type τ . Using the induction assump-
tion, we may assume that i, j = 1, and that the links z1 � z1, z1 ≺ y, y ≺ z′1,
and z′1 � z′1 are described by expressions L,M,L′,M ′ respectively. Finally, let
K be the context expression describing the joint x2 < x1, and let a be the label
of the node x1, which can be read from τ . We can now lose all the variables
from (2), by describing the context link x2 < y via the expression

Ka(L+M + � + L′ +M ′) .

The above is a level n1/2 expression, since n ≥ 1 and �—an expression that
describes only the empty context �—is a level 11/2 context expression. �

References

1. M. Bojańczyk and I. Walukiewicz. Forest algebras (unpublished manuscript).
http://hal.archives-ouvertes.fr/ccsd-00105796.

2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2002. release October, 1rst 2002.

3. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971.
4. W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and

System Sciences, 25:360–375, 1982.
5. W. Thomas. Logical aspects in the study of tree languages. In Colloquium on Trees

and Algebra in Programming, pages 31–50, 1984.
6. W. Thomas. On chain logic, path logic, and first-order logic over infinite trees. In

Logic in Computer Science, pages 245–256, 1987.

15

