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Abstract. The logic MSOL+B is defined, by extending monadic second-
order logic on the infinite binary tree with a new bounding quantifier B.
In this logic, a formula BX.@(X) states that there is a finite bound on
the size of sets satisfying ¢(X). Satisfiability is proved decidable for two
fragments of MSOL+B: formulas of the form -BX.p(X), with ¢ a B-
free formula; and formulas built from B-free formulas by nesting B, 3, V
and A.

1 Introduction

Using monadic second-order logic over infinite trees one cannot express proper-
ties such as: “there exists bigger and bigger sets such that...” or “there is a bound
on the size of sets such that...”. In this paper we present decision procedures for
an extension of MSOL where such properties are definable.

The need for such cardinality constraints occurs naturally in applications.
For instance, a graph that is interpreted in the full binary tree using monadic
second-order logic (MSOL) is known to have bounded tree-width if and only if
it does not contain bigger and bigger complete bipartite subgraphs [1]. Another
example: a formula of the two-way p-calculus [12] has a finite model if and only
if it has a tree model in which there is a bound on the size of certain sets [2].
Sometimes boundedness is an object of interest in itself, cf. [4], where pushdown
games with the bounded stack condition are considered.

In light of these examples, it seems worthwhile to consider the logic MSOL+B
obtained from MSOL by adding two new quantifiers B and U, which express
properties like the ones just mentioned. Let ¢(X) be a formula expressing some
property of a set X in a labeled infinite tree. The formula BX.4)(X) is satisfied
in those trees ¢ where there is a finite bound — which might depend on ¢ — on
the size of sets F' such that the tree ¢[X := F] satisfies ¢(X). We also consider
the dual quantifier U, which states that there is no finite bound.

Adding new constructions to MSOL has a long history. A notable early ex-
ample is a paper of Elgot and Rabin [6], where the authors investigated what
predicates P can be added to MSOL over (N, <) while preserving decidability
of the theory. Among the positive examples they gave are monadic predicates
representing the sets {i! : i € N}, {i¥ : i € N} and {k? : i € N}. This line of
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research was recently continued by Carton and Thomas in [5], where the list was
extended by so called morphic predicates.

A construction similar to our bounding quantifier can be found in [7], where
Klaedtke and Ruess consider extending MSOL on trees and words with cardi-
nality constraints of the form:

|X1| + -+ [ X < V2] + -+ |Y5]

Although MSOL with these cardinality constraints is in general undecidable,
the authors show a decision procedure for a fragment of the logic, where, among
other restrictions, quantification is allowed only over finite sets. Interestingly,
MSOL+B is definable using cardinality constraints, although it does fall outside
the aforementioned fragment and cannot be described using the techniques in [7]:

BX.p iff 3JY.Finite(Y) A VX.()(X) = |X| < |Y]).

Finally, a quantifier that also deals with cardinality can be formulated based
on the results of Niwinski in [8]. It is not however the size of sets satisfying
1(X), but the number of such sets that is quantified. More precisely, a binary
tree ¢ satisfies 3°X.4)(X) if there are continuum sets F' such that t{X := F]
satisfies ¢(X). This quantifier, it turns out, is definable in MSOL, and thus its
unrestricted use retains decidability.

Our bounding quantifier B, however, is not definable in MSOL. Using the
bounding quantifier, one can define nonregular languages and hence the question:
is satisfiability of MSOL+B formulas decidable? In this paper we investigate this
question and, while being unable to provide an exhaustive answer, we present
decision procedures for two nontrivial fragments of MSOL+B.

This investigation leads us to identify a class of tree languages, new to our
knowledge, which we call quasiregular tree languages. A set of infinite trees is
L-quasiregular if it coincides with the regular language L over the set of regular
trees and, moreover, is the sum of some family of tree regular languages. The
intuition behind an L-quasiregular language is that it is a slight non-regular
variation over the language L, yet in most situations behaves the same way
as L.

On the one hand, quasiregular languages are simple enough to have decid-
able emptiness: an L-quasiregular language is nonempty iff L is nonempty. On
the other hand, quasiregular languages are powerful enough to allow nontrivial
applications of the bounding quantifier: they are closed under bounding quan-
tification, existential quantification, conjunction and disjunction. This yields the
decidability result:

Theorem 43

The satisfiability problem for existential bounding formulas, i. e. ones built from
an MSOL core by application of B, 3, A and V is decidable.

Unfortunately quasiregular languages do not capture all of MSOL+B. For
instance, they are not closed under complementation, hence Theorem 43 gives
no insight into properties that use the dual quantifier U.



For this reason, we also conduct a separate analysis of the U quantifier (note
that satisfiability for U is related to walidity for B). By inspection of an underlying
automaton, we prove:

Theorem 47
Satisfiability is decidable for formulas of the form UX.4, where 1 is MSOL.

We are, however, unable to extend this result in a fashion similar to Theorem
43, by allowing for non-trivial nesting.

The plan of the paper is as follows. In Section 2, we briefly survey possible
applications of the bounding quantifier. After the preliminaries in Section 3, we
introduce the quantifier in Section 4. In Sections 4.1 and 4.2 we prove decidability
for bounding existential formulas, while in Section 4.3, we prove decidability for
formulas which use the unbounding quantifier outside an MSOL formula.
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2 Applications

In this section we briefly and informally overview three possible applications.
We would like to emphasize that in none of these cases does using the bounding
quantifier give new results, it only simplifies proofs of existing ones.

The first application comes from graph theory. Sometimes a graph G = (V, E)
can be interpreted in the unlabeled full binary tree {0,1}* via two formulas: a
formula a(z) true for the vertices used to represent a vertex from V' and a formula
B(x,y) representing the edge relation E. From [1], it follows that such a graph
G(a, B) is of bounded tree-width if and only if there is a fixed bound N on the
size n of full bipartite subgraphs K, ,, of G(a, ). Given two sets F,G C {0,1}*
one can express using MSOL that these sets represent the left and right parts
of a bipartite subgraph. The property that there exist bigger and bigger sets
F,G encoding a bipartite graph can then, after some effort, be expressed as a
formula of the form UZ.4(Z), where the unboundedness of only a single set Z
is required. The validity of such a formula in the unlabeled tree can be verified
using either one of the Theorems 43 and 47, hence we obtain conceptually simple
decidability proof for the problem: “does a graph represented in the full binary
tree have bounded tree-width?” [1]

Another application is in deciding the winner in a certain type of pushdown
game. A pushdown game is a two-player game obtained from a pushdown graph.
The vertices of the graph are the configurations (g,v) € @ x I'* of a pushdown
automaton of state space @ and stack alphabet I', while the edges represent the
transitions. The game is obtained by adding a partition of () into states )o of
player 0 and states 01 of player 1, along with a winning condition, or set of plays
in (Q x I'*)N that are winning for the player 0. In [4], the authors consider the
bounded stack winning condition, where a play is winning for player 0 if there
is a fixed finite bound on the size of the stacks appearing in it. Using a natural
interpretation of the pushdown game in a binary tree, the fact that player 0 wins



the game from a fixed position v is equivalent to the satisfiability of a formula
350 VSl BX. ¢(50,Sl,X,1))

in which ¥(Sp, S1, X,v) says that X represents a stack appearing in the unique
play starting in vertex v and concordant with the strategies Sy and S;. We are
able to quantify over strategies due to memoryless determinacy of the relevant
game. Moreover, by a closer inspection of the game, one can show that VS; can
be shifted inside the B quantifier, yielding an existential bounding formula whose
satisfiability is decidable by Theorem 43.

Finally, the bounding quantifier can be applied to the following decision
problem [3,2]: “Is a given formula ¢ of the modal p-calculus with backward
modalities satisfiable in some finite structure?” In [3] it is shown that the answer
is yes iff a certain nonregular language L of infinite trees is nonempty. This
language expresses the property that certain paths in a tree are of bounded
length, and can easily be expressed using an existential quasiregular formula.

3 Preliminaries

In this section we define the basic notions used in the paper: infinite trees, regular
languages of infinite trees and regular trees.

A finite A-sequence is a function a : {0,...,n} — A, while an infinite A-
sequence is a function a : N - A. We use boldface letters to denote sequences.
Given a function f : A — B and an A-sequence a, f o a is a well defined B-
sequence. Often we will forsake the functional notation and write a; instead of
a(i). The length |a| € NU{oo} of a sequence is the size of its domain. We use A*
to denote the set of finite A-sequences and AY for the set of infinite A-sequences.
The concatenation of two sequences a and b, denoted by a-b, is defined in the
usual fashion.

Let X' be some finite set, called the alphabet. An infinite X'-tree is a function
t: {0,1}* — X. Therefore, all infinite trees have the same domain. We denote
the set of infinite X-trees by Trees™(X). An infinite tree language over X is
any subset of Trees®™ (X). Since we will only consider infinite trees in this paper
and the next one, we will omit the word infinite and simply write X'-tree and
tree language. A node is any element of {0, 1}*. We order nodes using the prefix
relation <. Given v € {0,1}*, the subtree of t rooted in v is the tree t|, defined
by:

t|y(w) = t(v-w).

A regular tree is a tree with finitely many distinct subtrees; the class of all
regular trees is denoted by REG. An infinite path is any infinite sequence of
nodes 7r such that:

Tog =€ T =To-Gy To =T1-A1 - a; € {0,1} .

Given two nodes v < w, we define the set Bet(v,w) of elements between v and
wasv-{0,1}*\w-{0,1}*



Let X be an alphabet and * a letter outside X. A X -context is any X U {*}-
tree C' where the label * occurs only once, in a position called the hole of C'. We
don’t require this position to be a leaf, since there are no leaves in an infinite
tree, but all nodes below the hole are going to be irrelevant to the context. The
domain dom(C) of a context C is the set of nodes that are not below or equal
to the hole. Given a X-tree ¢t and a context C[] whose hole is v, the tree C[t] is
defined by:

[ t(w) if w=v-u for some u € {0,1}*;
CHl(w) = {C(w) otherwise.

The composition of two contexts C and D is the unique context C'-D such that
(C-D)[t] = C[D[t]] holds for all trees t. We do not use multicontexts for infinite
trees.

3.1 Nondeterministic Tree Automata and Regular Tree Languages

As in the case of finite trees, regular languages of infinite trees can be defined
both using automata and monadic second-order logic. The two approaches are
briefly described in this section.

Definition 31 [Parity condition] A sequence a € AN of numbers belonging to
some finite set of natural numbers A is said to satisfy the parity condition if the
smallest number occurring infinitely often in @ is even.

A nondeterministic tree automaton with the parity condition is a tuple
A= <Q727q1)670>

where () is a finite set of states, X' is the finite input alphabet, q; € @ is the
initial state, § C Q X X' X @ X @ is the transition relation and (2 : ) — N is the
ranking function. Elements of the finite image 2(Q) are called ranks. A run of
A over a Y-tree t is any Q-tree p such that

(p(w),t(v), p(v-0), p(v-1)) € & for every v € {0,1}*.

The run p is accepting if for every infinite path 7, the sequence of ranks 20 po
satisfies the parity condition. The automaton accepts a tree t from state q¢ € @ if
there is some accepting run with state ¢ labeling the root. A tree is accepted if
it is accepted from the initial state ¢;. The language of A, denoted L(A), is the
set of trees accepted by A; such a language is said to be regular. An automaton
is nonempty if and only if its language is.

We say two trees s and t are equivalent for an automaton A, which is denoted
s ~ 4 t, if for every state q of A, the tree s is accepted from ¢ if and only if the tree
t is. If the trees s and t are equivalent for A, then they cannot be distinguished
by a context, i.e. for every context C[], the tree C[s] is accepted by A if and only
if the tree C[t] is.



We now proceed to define the logical approach to regular languages of infinite
trees. Consider an alphabet ¥ = {o4,...,0,}. As in the finite tree case, with a
X -tree, we associate a relational structure

t={{0,1}",80,51,<,05,- .-, 07,)-

T

The relations are interpreted as follows: Sp is the set of left sons {0,1}*0, S; is
the set of right sons {0,1}*1, < is the prefix ordering, while g! is the set of nodes
that are labeled by the letter o;.

With a sentence 1 of monadic second-order logic we associate the language
L(v) of trees t such that t satisfies ¥. Such a language is said to be MSOL-
definable. A famous result of Rabin [9] says that a language of infinite trees is
MSOL-definable if and only if it is regular.

4 The Bounding Quantifier

The logic MSOL+B is obtained from MSOL by adding two quantifiers: the
bounding quantifier B, and its dual unbounding quantifier U, which we define
here using infinitary disjunction and conjunction:

B X.0:=VX.(o(X) = |X| <i)  UXp:=3X.(p(X)A|X]|>i)
BX. ¢ := VB X0 UX. ¢ := \;en U'Xop

MSOL+B defines strictly more languages than MSOL (see Fact 44), hence it is
interesting to consider decidability of the following problem:

Is a given formula of MSOL-+B satisfiable in some infinite tree?

The remainder of this paper is devoted to this question. Although unable to
provide a decision procedure for the whole logic, we do identify two decidable
fragments. The first, existential bounding formulas, is proved decidable in Sec-
tions 4.1 and 4.2, while the second, formulas of the form UX.y with ¢ in MSOL,
is proved decidable in Section 4.3.

4.1 Quasiregular Tree Languages

Before we proceed with the proof of Theorem 43, we define the concept of a
quasiregular tree language. We then demonstrate some simple closure proper-
ties of quasiregular tree languages and, in Section 4.2, show that quasiregular
tree languages are closed under bounding quantification. These closure proper-
ties, along with the decidable nonemptiness of quasiregular languages, yield the
decision procedure for existential bounding formulas found in Theorem 43.

For technical reasons, we will find it henceforth convenient to work on trees
where the alphabet is the powerset P(X) of some set X'. The same results would
hold for arbitrary alphabets, but the notation would be more cumbersome. By
Val(X) we denote the set of P(X)-trees. Elements of the set X will be treated



as set variables, the intuition being that a tree in Val(X) represents a valuation
of the variables in X. Given a tree ¢t € Val(X) and a set F' C {0,1}*, the tree

t[X :=F] e Val(X U {X})

is defined by adding the element X to the labels of all nodes in F' and removing
it, if necessary, from all the other nodes.

Bounding quantification for an arbitrary tree language L C Val(X) is defined
as follows. A tree ¢t € Val(X \ {X}) belongs to the language BX.L if there is
some finite bound on the size of sets F' such that the tree t{X := F] belongs to
L.

We now give the key definition of a quasiregular tree language.

Definition 41 (Quasiregular Language) Let L be a regular tree language.
A tree language K is L-quasiregular if

— KNREG = LNREG, and
— K is the union of some family of regular tree languages

A tree language is quasiregular if it is L-quasiregular for some regular lan-
guage L. For the rest of Section 4.1 we will use the letter L for regular languages
and the letter K for quasiregular ones.

Lemma 1. If K is L-quasiregular, then K C L.

Proof

Let {L;};cr be the family of regular tree languages whose union is K. We will
show that each language L; is a subset of L. Indeed, over regular trees L; is a
subset of L, since K and L agree over regular trees. This implies the inclusion
L; C L for arbitrary trees, since otherwise the regular language L; \ L would be
nonempty and therefore, by Rabin’s Basis Theorem [10], contain a regular tree.
O

The following easy fact shows that emptiness is decidable for quasiregular
tree languages given an appropriate presentation:

Fact 42 If K is L-quasiregular, then K is nonempty iff L is nonempty.

Proof

If L is nonempty, then it contains by Rabin’s Basis Theorem a regular tree
and hence K must contain this same tree. The other implication follows from
Lemma 1. O

In particular, every nonempty quasiregular language contains a regular tree.
For a variable X we define the projection function Il x which given a tree returns
the tree with X removed from all the labels. Projection is the tree language
operation corresponding to existential quantification, as testified by the following
equation:

L(3X.4p) = IIx (L(¢))-



A set F C {0,1}* is regular if the unique tree t[X := F] € Val({X}) is regular.
Equivalently, F' is regular if it is a regular word language. The following is a
standard result:

Lemma 2. If a regular tree t belongs to the projection IIx (L) of a regular lan-
guage L, then t[X := F] belongs to L for some regular set F'.

Proof

Since t is a regular tree, the set {t} is a regular tree language and so is ITx" ({t})-
Therefore the intersection Lﬂﬂ)}l({t}) is regular and nonempty and, by Rabin’s
Basis Theorem, contains some regular tree. Obviously, the X component in this
tree must be a regular set. |

Now we are ready to show some basic closure properties of quasiregular
languages:

Lemma 3. Quasiregular languages are closed under projection, intersection and
UNLON.

Proof

The cases of intersection and union are trivial; we will only do the proof for
projection. Let K be L-quasiregular. We will show that the projection ITx (K)
is ITx (L)-quasiregular. First we prove that IIx(K) is the union of a family of
regular languages. By assumption, K is the union some family of regular tree
languages {L;};cr. But then

Mx(K) = x(| J L) = | Tx(Ls)
ierl icl
and, since regular tree languages are closed under projection, ITx (K) is the
union of some family of regular tree languages.
We also need to show that for every regular tree t,

tenx(K) iff tenx(L).

The left to right implication follows from Lemma 1. The right to left implication
follows from the fact that if ¢ € ITx (L) then, by Lemma 2, for some regular set
F, t{X = F] € L. Since the tree t{X = F] is regular, it also belongs to K and
hence ¢ belongs to ITx (K).

O

4.2 Closure Under Bounding Quantification

In this section, we show that quasiregular tree languages are closed under ap-
plication of the bounding quantifier. This, together with the closure properties
described in Lemma, 3, yields a decision procedure for the fragment of MSOL+B
that nests B along with existential quantification, conjunction and disjunction.

Recall that a chain is any set of nodes that is linearly ordered by <. We
say that a chain C is a trace path of a set of nodes F' if the set F' N Bet(v,u) is
nonempty for all nodes v < w in C.



Lemma 4. A set of at least 3™ nodes has a trace path of size n. An infinite set
has an infinite trace path.

Let ¢t € Val(X) and L C Val(X' U {X}). An (L, X)-bad chain in the tree t is
an infinite chain C' whose every finite subset is a trace path of some set F' such
that t[X := F] € L. The set of trees containing no (L, X)-bad chain is denoted
by CX.L. Bad chains have the desirable property of being MSOL definable, as
testified by:

Lemma 5. If L is reqular then CX.L is regular.
Lemma 6. If K is L-quasireqular then REGNCX.K = REGNCX.L.

Proof

This follows from the fact that for a finite (and therefore regular) node set F'
and a regular tree t, the tree t{X := F] is regular, and hence belongs to L if and
only if it belongs to K. a

Lemma 7. Let L be a regular tree language. A regular tree that belongs to CX.L
also belongs to BX.L.

Proof
Consider a regular tree ¢t with m distinct subtrees. Let A being some automaton
recognizing L with k being the index of the relation ~ 4. Setting n to be 3¢ +1,
we will show that if ¢ does not belong to the language B™ X.L, then an (L, X )-bad
chain must exist.

Consider indeed a set F' of at least n nodes such that the tree ¢{[X := F)
belongs to L. By Lemma 4, this set has a trace path with more than k-m nodes.
Let v < w be two nodes on this trace path such that

t[X :=Fll, =4 t[X := Fllo and ty =ty -

Such two nodes exist by virtue of the trace path’s size. Moreover, since v and w
are on the trace path, the intersection F NBet(v,w) is nonempty. Let v € {0,1}*
be such that w =v - w.

We claim that the chain {v-u® : i € N} is a bad chain. For this, we will show
that for every i € N, the subchain C; = {v-u? : j < i} can be expanded to a set
F; satisfying t[X := F;] € L.

This is done by pumping ¢ times the part of the set F' between v and w.
Consider the following partition of F':

Fi={u:v<v}nF  F=Betlv,w)NF F={u:v>w}nF
One can easily check that the following set F; contains the subchain Cj:

F; = FF U U vul vV Fy U v-ui-v_l-F3.
j€{07"'7i}



Moreover, since for all j € {0,...,4}, the equivalence
HX = Bl ~a X = Fll,
holds, the tree ¢t[X := F;] belongs to L. O

Using the Lemma 7 above, we can show that quasiregular tree languages are
closed under application of the bounding quantifier.

Lemma 8. If K is quasiregular, then so is BX.K.

Proof
If K is quasiregular, then it is a union |J;.; L; of some family of regular tree
languages. Therefore BX. K is also a union regular tree languages:

BX.K = U U B X. L,
i€l j>0

Let L be such that K is L-quasiregular. We will show:
CX.L NREG = BX.K N REG.

The right to left inclusion follows from Lemma 6 and the simple inclusion
BX.K C CX.K. The left to right inclusion follows from Lemma 7. O

Putting together the closure properties of quasiregular tree languages proved
in this and the previous section, we obtain:

Theorem 43
The satisfiability problem for existential bounding formulas, i.e. ones built from
arbitrary MSOL formulas by application of B, 3, A and V is decidable.

Proof

By Lemmas 3 and 8, the language L(%)) of an existential bounding formula is
L-quasiregular for some effectively obtained regular tree language L. By Fact
42, the emptiness of L(7)) is equivalent to the emptiness of L. d

Unfortunately, we cannot hope to extend the quasiregular tree language ap-
proach to decide all possible nestings of the bounding quantifier, as certified by
the following Fact:

Fact 44 Even for regular L, -BX.L is not necessarily quasiregular.

Proof

The language L in question is obtained from a formula ¢ with free variables X
and Y. This formula states that Y contains no infinite subchains and that X is
a subchain of Y.

In a regular tree t € Val({X,Y}) with n distinct subtrees, a subchain of ¥’
can be of size at most n — otherwise Y has an infinite subchain and ¥ does not
hold. Therefore -BX.L(¢)) is a nonempty language without a regular tree and
cannot be quasiregular. a

10



4.3 The Unbounding Quantifier

In this section we present a procedure which, given a regular language L C
Val(X) and a variable X € X, decides whether the language UX.L is nonempty.
This implies that satisfiability is decidable for formulas of the form UX.¢(X),
where ¢ is in MSOL. Unfortunately, we are unable to extend this decision pro-
cedure to accommodate nesting, the way we did in Theorem 43. On the other
hand though, the procedure runs in polynomial time in the size of an input
parity automaton.

In order to help the reader’s intuition a bit, we will begin our analysis by
debunking a natural, yet false, idea: for every regular language L there is some
n € N such that the language UX.L is nonempty if and only if the language
U"X.L is.

The intuition behind this idea would be that a pumping process should in-
flate arbitrarily a set F' satisfying ¢[X := F] € L once it has reached some
threshold size. The problem, however, is that a tree may contain labels which
are not part of the set F', and the pumping might violate this labeling. A suitable
counterexample is the following language L C Val({X,Y}):

X is a subset of Y and Y is a finite set.

Obviously the language UX.L is empty, yet for every n € N, the language U" X.L
is nonempty. We will have to bear such issues in mind in the proofs below, taking
care that we pump only the part of the labeling corresponding to X.

Let us fix a set X, a regular language L C Val(X) and a variable X € X for
the rest of this section. We will use X' to denote the set X'\ {X'}. Analogously to
the “language” definition of BX.L in Section 4.1, we say a tree t € Val(Y') belongs
to UX.L if there is no finite bound on the size of sets F' such that ¢[X := F] € L.

An infinite sequence of nodes v is increasing if v; < v;41 holds for all ¢ € N.
A family of node sets F is traced by an increasing sequence v of nodes if for all
ieN,

|F N Bet(v;,vig1)| >4 for some F € F .

Lemma 9. A family that contains sets of unbounded size is traced.

We fix now some nondeterministic parity automaton recognizing L:
A= <Q,E,A,QI,5,0>-

Without loss of generality, we assume that every state ¢ € () is used in some
accepting run. The rest of this section is devoted to an analysis this automaton
and to establishing a structural property equivalent to the nonemptiness of the
language UX.L.

A descriptor is any element of Q x 2(Q) x Q. With a P(X)-context C we
associate the set Trans(C) consisting of those descriptors (g,m,r) such that
there is a run of A that starts in the root of C' in state ¢ and:

11



— The (finite) path of the run that ends in the hole of C /g)\
uses states of rank at least m and ends in the state r.

/Py
— All the (infinite) paths of the run that do not go through : \
the hole of C satisfy the parity condition. Aecr-Erma

The intuition is that Trans(C) describes the possible runs of A which go
through the context C'. The compositions of two descriptors and then of two
sets of descriptors are defined below (descriptors which do not agree on the state
p do not compose):

(¢,n,p) - (p,m,7) = (¢, min(n,m), r) (descriptor)
X Y={z-y:2z€eX,yeYY} (set of descriptors).

The descriptor set of the context composition C' - D can be computed from
the composition of the descriptor sets of the contexts C' and D:

Trans(C - D) = Trans(C) - Trans(D). (1)

We will also be using descriptors of P(%)-contexts. For a P(%)-context C' and
k € N, we define Transg (C) to be the set

U Trans(C[X := F)).
F:|F|>k

A schema is a pair R = (R*, R°) of descriptor sets. A schema is meant to
describe a P(X)-context, the intuition being that the R° descriptors can be
obtained from any sets F', while the R® descriptors are obtained from “large”
sets. A P(X)-context C is said to k-realize a schema R if R° C Transo(C) and
R* C Transg(C). The composition R - S of two schemas R = (R*,R°) and

S = (S*,S°) is defined to be the schema
R-S=(R*-S°UR°-S*,R°-5°).

The following obvious fact describes how composition of schemas corresponds to
composition of P(X)-contexts.

Fact 45 Let R and S be schemas which are respectively k-realized by P(5)-
contexts C' and D. The schema R - S is k-realized by the context C - D.

We now proceed to define the notion of an infinitary sequence. The intuition
here is that an infinitary sequence exhibits the existence of a tree belonging to
UX.L, which is obtained by composing all the contexts in C:

Definition 46 A sequence of schemas R is infinitary if both

— There is a sequence of P(f))—contexts C such that for every n € N the schema
R, is n-realized by the context C; and
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— For some fixed state r € @) and all n € N, there is a state sequence q with
qo = r such that:
1. For i < n, (g;,m,qi+1) € R for some rank m;
2. For i = n, (g;,m, q;41) € R} for some rank m;
3. For i > n, (g;,m, q;+1) € R; for some even rank m.

Lemma 10. UX.L is nonempty iff there exists an infinitary sequence.

Proof

Consider first the right to left implication. Let R be the infinitary sequence
with C and r € @ being the appropriate sequence of contexts and starting state
from Definition 46. Let t € Val(X') be the infinite composition of all successive
contexts in C':

t=Co-C1-Cs----
Let D be a context such that (gr,n,7) € Trans(D) for some n € 2(Q). This
context exists by our assumption on 4 not having useless states. Using the
properties of the sequence R postulated in Definition 46, one can easily verify
that the tree D[t] belongs to UX.L.
For the left to right implication, consider a tree ¢ in UX.L. From this tree
we will extract an infinitary sequence. Consider the family of node sets

{F C{0,1}* : {[X := F] € L}

By assumption on ¢, this family contains sets of unbounded size. Therefore, by
Lemma 9, it is traced by some increasing sequence v. Consider the sequence C
of contexts, where C; is obtained from the tree t|,, by placing the hole in the
node corresponding to v;;1. One can verify that the sequence of schemas

R; = (Trans(C;), Trans;(C})),
along with r = gy, is infinitary. O

Although infinitary sequences characterize the unboundedness of L, they are
a little hard to work with. That is why we use a special type of infinitary se-
quence, which nonetheless remains equivalent to the general case (cf. Lemma
12). Consider a very simple schema R which consists of two loops in R° and a
connecting descriptor in R*®:

R=(R°R*)  where R°={(q,k,q),(p,m,p)} and R*={(g,n,p)}

We say the pair of states (g,p) used above is inflatable if the sequence R con-
stantly equal R is infinitary, for some choice of ranks k, m and n. Note that in
this case, the rank m must be even.

Lemma 11. The set of inflatable pairs can be computed in polynomial time.

Proof
For i € N, consider the set A; of triples

<(Q1,7’L1,p1), (q27n27p2)7 (q3an37p3)> € (Q X ‘Q(Q) X Q)3

~

such that for some P(X)-context C:
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— (q1,m1,p1), (g3,m3,p3) € Transy(C);
— (g2,m2,p2) € Trans;(C).

Using a dynamic algorithm, the set A; can be computed in time polynomial on
1 and the size of the state space (). By a pumping argument, one can show that
the pair (g, p) is inflatable if and only if

<(q7 nlaq)7 (QJn2ap)7 (p7 n37p)> € A\QH-I for some even ns.
O

We now proceed to show Lemma 12, which shows that one can consider
inflatable pairs instead of arbitrary infinitary sequences.

Lemma 12. There is an infinitary sequence iff there is an inflatable pair.

Proof

An inflatable pair is by definition obtained from an infinitary sequence, hence
the right to left implication. For the other implication, consider an infinitary
sequence R along with the appropriate sequence of contexts C. With every
two indices ¢ < j, we associate the schema RJ[i, j] obtained by composing the
schemas R; - --- - R;_;. Since there is a finite number of schemas, by Ramsey’s
Theorem [11] there is a schema R and a set of indices I = {i1 <ip <---} CN
such that R[i,j] = R for every i < j in I. Naturally, in this case R- R = R
and, by Fact 45, the sequence constantly equal R is an infinitary sequence which
realizes the sequence of contexts D defined by

D;=Cj - C

ij+1—1-

We will now show how to extract an inflatable pair from this sequence. Let ¢ — p
be the relation holding for those states ¢, p € @ such that (g, m, p) belongs to R°
for some rank m. Since R- R = R, the relation — is transitive. Let (¢, m,p) € R*
be a descriptor used for infinitely many n in clause 2 of Definition 46. We claim:

—r—=q,q — ¢ and ¢’ — q, for some ¢’ € ). This follows from transitivity
of — if we take n in Definition 46 to be big enough to find a loop.

— p—p and (p',m,p') € R° for some p' € ) and even rank m. This is done
as above.

Consider finally the sequence of contexts E defined by
E;=D;-D;iy-Djys .

By Fact 45, for all i € N the schema R-R-R = R is i-realized by the context E;.
One can easily verify that the sequence E witnesses the fact that (¢',p') is an
inflatable pair. O

From Lemmas 10, 11 and 12 we immediately obtain:

Theorem 47
Satisfiability is decidable for formulas of the form UX.4, where 1) is MSOL.

Note that the appropriate algorithm is in fact polynomial in the size of a parity
automaton recognizing .
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5

Closing Remarks

The results in this paper can only be thought of as initiating research regarding of
the bounding quantifier: we have not shown satisfiability decidable for the whole
logic. The Theorems 43 and 47 can thus be improved by showing satisfiability
decidable (or undecidable) for larger fragments than the ones considered above.
Moreover, a better complexity assessment for Theorem 43 would be welcome.
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