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1. Introduction.

The content of the following note lives at the border between algebra and topology.
Historically the origin and development of algebraic topology was stimulated by beautiful
applications of algebraic methods for solving topological problems. Later it turned out that
going in the opposite direction can be fruitful for algebra also. Perhaps the first observation
of this type can be derived from the celebrated Dold-Kan theorem from the fifties, which
can be viewed as a statement that topological observations about Eilenberg - Mac Lane
spaces should have meaning in the category of chain complexes. In proceeding years we
observe a quick development of the point of view that topological objects and methods
should give fruitful observations for algebra. We could give many examples of various
applications in algebra of topologically defined homology theories or algebraic K-theory,
but of course this is not our aim in this paper.

John Rognes in [R] defined extensions of ring spectra which have algebraic origin and
flavor. We can talk about Galois extensions of ring spectra, separable extensions, thh-étale
extensions and just étale ones. When R is a ring we can associate to it an Eilenberg - Mac
Lane ring spectrum HR so we can view problems about rings as problems in topology. We
would like to spend some time on studying the following question: do we get in this way
any new extensions of an Eilenberg - Mac Lane spectrum HR for a given ring R? In other
words: does every extension of HR come from an extension of rings of the corresponding
type (Galois, separable, étale)? To say this again in a different way: do we get anything
new for the theory of rings via embedding them in the stable homotopy category?

The following note is mostly devoted to the easy part of the problem. We are going
to show that in the case of Galois extensions, with Galois group discrete and finite, the
answer to the question above is negative. Every Galois extension of HR in the category
of spectra comes from a Galois extension of rings. Such a strong statement is not true
in the case of separable extensions. Example 3.5 shows that the situation is much more
complicated. In Theorem 3.4 we show that when we restrict ourselves to the connective
extensions of HR for which the Künneth spectral sequence collapses then the answer is the
same as in the case of Galois extensions. But by no means is this a satisfactory solution.
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It shows rather that we do not have any good intuition for what separability means in
the world of stable homotopy theory and in which direction we should proceed in order to
classify the separable spectra over HR.

In Section 4 of the paper we approach the case of étale type extensions of spectra. Here
the situation resembles the case of separable extensions but we get stronger results. We
can fully answer our main question in the connective case and the answer is the same as for
extensions of Galois type. On the other hand we know that in general the situation for etalé
extensions is different from the connective case. The starting point for the consideration of
this note came from the crucial observation of Mandell. As discussed in [MM, example 3.5],
Mandell in private communication showed that, for a prime p, the extension HFp → B is
étale (in a certain sense) where B = F (K(Z/p, n),HFp) is a mod p cochain HFp-algebra
of an Eilenberg - Mac Lane space K(Z/p, n) for n ≥ 2.

Every ring spectrum comes with an associated graded ring of homotopy groups. Hence
in all cases we first discuss the corresponding statement about graded rings and then about
ring spectra. The graded algebraic case is not necessary for topological arguments but can
serve as a source of some good intuitions. The general picture which emerges from our
considerations can be summarized as follows. Typically we add nothing new to the theory
of rings when we embed them into the stable homotopy category of connective spectra. All
new phenomena can arise only from the existence of nontrivial negative homotopy groups.

In the paper we use freely language of [R] and [EKMM]. While staying in the world of
topology, we work in the category of S-algebras and S-modules, where S of course denotes
the sphere spectrum. In algebra all our rings are unital with unital maps. S-algebras
are always denoted with capital letters A, B, etc. For a commutative S-algebra A, MA

denotes the symmetric monoidal category of right A-modules (left A-modules AM). We
say that B is an A-algebra if it is a monoid in MA (compare [EKMM, Chapter 7]). By
FA(., .) we denote the spectrum of A-module maps. Our algebras will always be unital by
which we mean that they come equipped with a unit map 1AB : A→ B which is compatible
with structural units 1A : S → A and 1B : S → B. We consistently remove S from our
notation, hence for example, 1A is the same as 1SA, A ∧A denotes A ∧S A, etc.

Acknowledgment: This research was partially supported by the Polish Scientific
Grant N N201 387034.

2. Galois extensions.

Let A and B be commutative rings and G a finite group. Following [G] we define:

Definition 2.1: We say that the extension of commutative rings A ↪→ B is G-Galois
if G is a subgroup of Aut(B/A), BG = A and the map h : B ⊗A B −→ Map(G,B) is a
B-algebra isomorphism, where h(x⊗ y)(g) = x · g(y).

In the case of graded rings we assume that the action of G preserves grading. By a
grading we always mean here Z-grading. The B-algebra of functions Map(G,B) will be

2



also viewed very often as
∏

g∈G B so we can project from it on the coordinate corresponding
to the given g ∈ G. Observe that the map h preserves the natural gradings of the source
and the target. An excellent account of basic results on Galois extensions of commutative
rings is contained in [BR, Part 1].

Theorem 2.2: Let A ↪→ B be a Galois extension of graded rings. If A is nontrivial
only in degree 0 then the same is true for B.

Proof. We show first (after [G, Theorem 1.6]) that B is a finitely generated projective
A-module. The proof given there works as well in the graded case. We present it here
because studying the corresponding formulas from the topological point of view gives us
the desired result for spectra. Let Σxi ⊗ yi be the preimage of (1, 0, ..., 0) ∈

∏
g∈G B,

where 1 is at the coordinate corresponding to the unit e of G. Define the A-linear trace
tr : B → A by tr(y) = Σg∈Gg(y). Let φi : B → A be defined by φi(z) = tr(zyi). Then
direct calculation gives us the formula for any z ∈ B:

2.2.1.
z = Σ

i
φi(z) · xi

This immediately implies that B is a finitely generated projective A-module because for-
mula (2.2.1) shows that the pairs (xi, φi) form a dual basis for B over A. But for us it is
more important to observe that formula (2.2.1) shows that B can have nontrivial elements
only in finitely many degrees (is finitely graded) because we have only finitely many xis
and A is concentrated in degree 0. This observation immediately implies our statement. If
k is the highest (lowest) nontrivial degree of B then B⊗AB has highest (lowest) nontrivial
degree in dimension 2k. But the grading of

∏
g∈G B is the same as the grading of B. Hence

k has to be 0. ♣

Now we move towards topology. Let A→ B be a map of commutative S-algebras and
G is a finite group acting from the left on B via commutative A-algebra maps. We will
assume that A is cofibrant as a commutative S-algebra and B is cofibrant as a commutative
A-algebra. Let us recall (compare [R, Definition 4.1.3]) the definition of Galois extension
in the category of commutative S-algebras.

Definition 2.3: With the assumptions as above we say that A → B is a G-Galois
extension of commutative S-algebras if the two canonical maps of S-modules i : A→ BhG

and h : B ∧A B → F (G+, B) are weak equivalences.

Perhaps we should also recall here after [R] the definitions of the maps i and h. The
map i : A → BhG = F (EG+, B)G is the right adjoint to the composite G-equivariant
map A ∧ EG+ → A → B that collapses the contractible free G-space to a point. The
map h is right adjoint to the composite map B ∧A B ∧ G+ → B ∧A B → B where the
first map comes from the action of G on the middle B from the left and the second is
just the multiplication map. Observe that in our case (G finite) we can equally well write
F (G+, B) as

∏
g∈G B. Note also that we can view h as

B ∧A B
id∧

∏
g

−→ B ∧A
∏
g∈G

B

∏
µ◦(id∧prg)
−→

∏
g∈G

B
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where we denote by g the map B → B coming from the action of g ∈ G on B and prg
denotes the projection on the g-factor. For our purposes the crucial feature of G-Galois
extensions of commutative ring spectra is hidden in the property of self-duality. Let us
recall the corresponding notions (compare [R, Section 3.3]). In each symmetric monoidal
category there is a natural map

ν : F (X,Y ) ∧ Z → F (X,Y ∧ Z)

which is right adjoint to a map ϵ∧1 : X∧F (X,Y )∧Z → Y ∧Z where ϵ : X∧F (X,Y )→ Y
is left adjoint to the identity map on F (X,Y ). Coming back to our considerations we can
make the following definitions ([R, Definition 3.3.1]):

Defintion 2.4: i. We say that an A-module M is dualizable if the map ν :
FA(M,A) ∧A M → FA(M,M) is a weak equivalence.

ii. We say that A-algebra B is self-dual if it is dualizable as an A-module.

Now, as a direct consequence of [R, Proposition 6.4.7], we have:

Proposition 2.5: If A is a commutative Eilenberg - Mac Lane ring spectrum and
A→ B is a G-Galois extension then B is self-dual as an A-algebra.

Theorem 2.6: Let R be a commutative ring and A = HR → B be a G-Galois
extension of commutative ring spectra. Then B is equivalent to H(π0B) and R→ π0B is
a G-Galois extension of commutative rings.

Proof. The proof is a combination of results from [R] and [EKMM]. By [R, Proposition
6.2.1] we know that B is a dualizable A-module. Then by [R, Proposition 3.3.3] and
[EKMM, Chapter III, Theorem 7.9] we know that B is a retract of a finite cell A-module.
This implies that B has only finitely many nontrivial homotopy groups each of which is a
finitely generated R-module.

We will prove first that B is an Eilenberg - Mac Lane spectrum. We will follow the
lines of the algebraic graded case. The argument is only a little more delicate. On the
other hand this is the crucial step because the rest of our theorem is then proved in [R,
Proposition 4.2.1]. For the reader’s convenience we will sketch Rognes’ argument later.

Let k be the lowest integer such that πk(B) ̸= 0. Assume that k < 0. By [EKMM,
Chapter IV] we have a spectral sequence converging to π∗(B ∧A Bop) where the smash
product is taken in the derived sense. We will refer to this spectral sequence in the future
as the Künneth spectral sequence. The second page is given by the formula

E2
p,q = Torπ∗(A)

p (B∗, B∗)q

In our case it implies immediately that π2k(B ∧A B) = πk(B)⊗Rπk(B). If this latter group
is nontrivial we get a contradiction having nontrivial elements in degree 2k (argument the
same as in the graded algebraic case). But the group in question indeed is nontrivial by a
simple algebraic lemma, probably well known to everybody:
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Lemma 2.6.1: Assume that R is a commutative ring and M is a nontrivial finitely
generated module over R. Then M ⊗R M is nontrivial.

Proof. Assume that M has only one generator. Then M is isomorphic to R/I for a
certain proper ideal I. Let J be a maximal ideal containing I. Then R/I maps epimorphi-
cally onto R/J . We know that R/J⊗RR/J is nontrivial by maximality of J (is isomorphic
to R/J) so by the right exactness of the tensor product we know that R/I ⊗RR/J is non-
trivial. Hence, again by the right-exactness of the tensor product we get that R/I ⊗R R/I
is nontrivial.

We can proceed further by induction with respect to the number of generators in M .
If M has n generators then it fits into an exact sequence of R-modules

0→ L→M → N → 0

in which L has one and N has n − 1 generators. By induction N ⊗R N is nontrivial and
M ⊗R M maps epimorphically onto M ⊗R N which maps onto N ⊗R N by the right-
exactness of the tensor product. Now the proof of our lemma is finished.♣

Now we come back to the proof of 2.6. By the considerations above we know that
k ≥ 0, and hence B is connective. But then by [EKMM IV, Proposition 1.4] the dual
A-spectrum of B, FA(B,A), is coconnective (has nontrivial homotopy groups only in non-
positive dimensions). On the other hand by 2.5 B is self-dual. This implies that the
homotopy groups of B have to be concentrated in degree 0, as we wanted to show.

Now we can finish the proof of 2.6. Since we know now that B is an Eilenberg - Mac
Lane spectrum we can recall [R, Proposition 4.2.1]. Let us write T for π0(B). By [EKMM,
IV.4.3] we have the homotopy fixed point spectral sequence

E2
s,t = H−s(G, πtHT ) =⇒ πs+t(HThG)

which in our case gives us TG ≃ π0(HThG) ≃ π0(HR) = R.
Similarly we have a useful spectral sequence for the homotopy groups of a smash

product, which was used before and will be crucial in the next section. It is of the form

E2
s,t = TorRs,t(T, T ) =⇒ πs+t(HT ∧HR HT )

In our case, when R and T are concentrated in degree 0, it collapses to the line t = 0.
We compute at the origin: T ⊗R T ≃ π0(HT ∧HR HT ) ≃ π0(

∏
g∈G HT ) =

∏
g∈G T . This

implies that R→ T is G-Galois in the algebraic sense.♣

3. Separable extensions.

For separable extensions of ring spectra we would like to prove the same statement
as was proved for Galois extensions in the previous section. From the ideological point
of view this is the expected statement because as in algebra one should expect that any
commutative separable extension embeds into a G-Galois one, for some G. But, as was said
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in the introduction, the situation seems to be much more complicated and we are not able
to move beyond the connective case. Before going into the stable homotopy category let
us state and prove the graded algebraic counterpart of the separability statement. Let A
and B be two Z-graded unital rings, with A commutative. Assume that B is an A-algebra.

Definition 3.1: We say that A-algebra B is separable over A if the A-algebra mul-
tiplication map µ : B ⊗A Bop → B, considered as a map in the category of B-bimodules,
admits a section σ : B → B ⊗A Bop.

Theorem 3.2: Assume that A is concentrated in degree 0 only, and that B is con-
nective and separable over A. Then B is concentrated in degree 0.

Proof. The proof is rather trivial. The crucial but obvious observation in the case
A = A0 is that if x1⊗x2 = x3⊗x4 ̸= 0 in B⊗ABop and all x′

is are of homogeneous degree
then deg(x1) = deg(x3) and deg(x2) = deg(x4). This is the case because B ⊗A Bop has
double grading, every Bi is an A-bimodule and in the tensor product we do not have any
identifications between elements of different bi-degrees.

Separability means that there exists an element

ι =
k

Σ
i=1

bi ⊗ ci ∈ (B ⊗A Bop)0 = B0 ⊗A Bop
0

satisfying for any b ∈ B:
3.2.1.

b · ι = b(
k

Σ
i=1

bi ⊗ ci) = (
k

Σ
i=1

bi ⊗ ci)b = ι · b

The element ι is equal to the image of 1 under the map σ : B → B ⊗A Bop.
But the equality 3.2.1 can be satisfied by an element b of degree different from 0 only

when b · ι = ι · b = 0, by the observation from the beginning of the proof. On the other
hand this means, that if B is not concentrated in degree 0, then the splitting σ cannot
exist.♣

Now we come to the definition of separable extension of ring spectra, as it is given
in [R, Definition 9.1.1]. Throughout the rest of this section we will assume that A is a
cofibrant commutative S-algebra and B is a cofibrant associative A-algebra.

Definition 3.3: We say that an A-algebra B is separable over A if the A-algebra
multiplication map µ : B ∧A Bop → B, considered as a map in the stable homotopy
category of B-bimodules relative to A, admits a section σ : B → B ∧A Bop.

Theorem 3.4: Let R be a commutative ring and B be a separable algebra over HR,
as defined above. Assume that B is connective and the Künneth spectral sequence for
B ∧HR Bop collapses on the second page. Then B is equivalent to Hπ0B and the natural
map on π0, R→ π0B, is a separable extension of rings.

Proof. We would like to follow the lines of the proof of 3.2 taking as an extension of R
the ring B∗ = π∗(B). The map σ gives us the splitting of π∗(B) from π∗(B∧HRBop). But
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we are not able to use 3.2 directly because the statement π∗(B∧HRBop) = π∗(B)⊗Rπ∗(B)
is false in general. Instead, as it was mentioned in the previous section, we have only the
Künneth spectral sequence converging to π∗(B ∧HRBop) ([EKMM, Chapter IV]) with the
second page given by the formula

E2
p,q = TorRp (B∗, B∗)q

Every group Bi is a module over R and a free graded R-resolution of B∗ is just a
graded sum of ordinary free R-resolutions of Bis. Tensoring over R respects this sum and
we have the following formula for the second page

E2
p,q =

⊕
i+j=q

TorRp (Bi, Bj).

By assumption this is also the E∞-page. We want to apply a similar argument as in 3.2 so
we are forced to study the effect of B∗-multiplication on π∗(B∧HRB

op) from both sides. We
still know that σ is a bimodule map so if we denote ι = σ∗(1) ∈ π0(B∧HRBop) = B0⊗Bop

0

then for every element b ∈ π∗(B) we have

σ∗(b) = b · ι = ι · b

Let b be represented by a map Sn → B, which will also be called b. It defines a map l
from the nth suspension of B to B given by the composition
3.4.1.

Sn ∧B → B ∧B → B ∧HR Bop → B

where the first map is b ∧ id, the next comes from the fact that the S-module and the
HR-module structures on B are compatible, the last map is µ and ∧ without subscript
denotes smashing over the sphere spectrum. This map represents the multiplication by b
on π∗(B) from the left in the sense that for any f : Sk → B representing an element in
πk(B) we can get b · f as l ◦ (idSn ∧ f). Of course we identify Sn ∧ Sk with Sn+k. We will
call the map l the left multiplication by b.

The homotopy groups of B and Bop are the same so similarly, again using b, we get
a map Bop ∧ Sn → Bop. We will denote it by r and call it the right multiplication by b.
We can smash the sequence 3.4.1 with Bop over HR and get a natural map Sn ∧ B ∧HR

Bop → B ∧HR Bop. Similarly, using the right multiplication by b, we get a natural map
B∧HRBop∧Sn → B∧HRBop and these two maps give us two maps of spectral sequences
(for the functoriality of the spectral sequence construction see [EKMM, Section IV.5])

lE
2
p,q = TorRp (π∗(S

n ∧B), π∗(B
op))q → TorRp (π∗(B), π∗(B

op))q = E2
p,q

and

rE
2
p,q = TorRp (π∗(B), π∗(B

op ∧ Sn))q → TorRp (π∗(B), π∗(B
op))q = E2

p,q

where the letters l and r refer to the left and right multiplication by b.
From these spectral sequences we see that b · ι is equal to the image of

ι ∈ TorR0 (B0, B0) = lE
2
0,n
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in
E2

0,n =
⊕

i+j=n

TorR0 (Bi, Bj) =
⊕

i+j=n

Bi ⊗Bj .

But by the construction of the map Sn ∧B ∧HR Bop → B ∧HR Bop and the connectivity
of B we know that the image of ι is contained in Bn ⊗ B0. Similarly right multiplication
by b takes ι to B0 ⊗Bn.

In the general situation we are still far from getting a contradiction. But we assumed
that our Künneth spectral sequence has trivial differentials. This means that the group⊕

i+j=n

TorR0 (Bi, Bj)

is a subgroup of πn(B ∧HR Bop). Hence as in the algebraic case, left and right multipli-
cations of ι by an element b of degree higher than 0 has to be 0. This means that the
splitting σ cannot exist.♣

Of course, our argument does not work in the presence of negative homotopy groups.
Similarly if we can expect nontrivial differentials in the Künneth spectral sequence then
an element of the group Bn ⊗ B0 can represent the same element in πn(B ∧HR Bop) as
some element of B0 ⊗ Bn. Let us describe one canonical situation when our assumption
on the Künneth spectral sequence is fulfilled. Our algebra B is an extension of HR and
being a module over an Eilenberg - Mac Lane spectrum it is equivalent in the stable
homotopy category to the wedge of Eilenberg - Mac Lane spectra H(Bi, i). Of course here
Bi = πi(B), every Bi carries the structure of an R-module and hence H(Bi, i) carries
the structure of HR-module as well. Let v :

∨
H(Bi, i) → B give us the weak homotopy

equivalence guaranteed above. We claim that if v is an equivalence of HR-modules then
the Künneth spectral sequence has trivial differentials. This is the case because then we
have the decomposition

π∗(B ∧HR Bop) =
⊕
i,j

π∗(H(Bi, i) ∧HR H(Bj , j))

which implies that our spectral sequence decomposes into a sum of spectral sequences

E2
p,q =

⊕
i,j

E(i, j)2p,q

where
E(i, j)2p,q = TorRp (Bi, Bj)q

Now each spectral sequence E(i, j) has trivial differentials by degree reasons as each E(i, j)
can have nontrivial elements only in one row of degree i+ j. Hence the Künneth spectral
sequence for π∗(B ∧HR Bop) collapses at E2.

Example 3.5 (after Birgit Richter, private communication): Let B = FHR(ΣHR ∨
Σ−1HR,ΣHR ∨ Σ−1HR). This is a Brauer-trivial Azumaya algebra over HR (see [BRS]
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for the definition of Azumaya algebras in this setting), so in particular it is separable over
HR. Observe that B∗(= π∗(B)) is isomorphic to R for ∗ = 2,−2 and B0 = R ⊕ R. One
checks directly that B∗ is isomorphic as an R-algebra to the algebra of 2× 2-matrices over
R with appropriate grading. This implies that B∗ is separable over R. Hence it is difficult
to imagine how one could make our assumption on B0 in 3.2 or 3.4 weaker.

Remark 3.6: With some additional assumptions on B we can drop the connectivity
hypothesis in order to get the same final result of Theorem 3.4 but we always have to
assume that the Künneth spectral sequence collapses. Below we give a sample example of
such a statement. We state the example and give a proof only in the graded algebraic case.
The details of the proof for algebras over HR with rings of homotopy groups satisfying
the hypothesis of 3.7 (below) are left for the interested reader.

Example 3.7: Assume that A is an algebraic graded ring concentrated in degree 0
only and B is a separable algebra over A. If additionally B0 has no 0-divisors in B and
for any k ̸= 0 the multiplication µ : Bk ⊗A B−k → B0 is injective then B is concentrated
in degree 0.

Proof. We will use the observation on the bigrading of B⊗ABop from the proof of 3.2,
which works as well without the connectivity assumption imposed on B. As previously,
separability means that there exists an element

ι := σ(1) =
k

Σ
i=1

bi ⊗ ci ∈ (B ⊗A Bop)0

satisfying for any b ∈ B
3.7.1.

b · ι = b(
k

Σ
i=1

bi ⊗ ci) = (
k

Σ
i=1

bi ⊗ ci)b = ι · b

We can assume that the elements bi and ci are homogeneous and deg(ci) = −deg(bi). Let
{bij}j∈J be the set of these bis which have the highest degree, say equal to t. Assume that
t is minimal with respect to the property that ι gives us a splitting. If t > 0 then

b(Σj∈Jbij ⊗ cij ) = 0

for any b of degree bigger than 0 by 3.7.1 and degree reasons.
After applying the multiplication map to the formula above we get b(Σj∈Jbij ·cij ) = 0

in B0 and by our assumption on B0 we get Σj∈Jbij · cij = 0. This last equality means that

Σj∈Jbij ⊗ cij = 0

The same is true for elements of negative degree if we start our considerations from mul-
tiplication from the left. This means that if B has an element of degree different from 0
then t = 0 and ι ∈ B0 ⊗A Bop

0 . But in such a case for deg(b) ̸= 0 we must have b · ι = 0,
again by degree reasons. This implies that σ is not a splitting.♣
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4. Étale extensions.

Let us start this section with the definition of topological Hochschild homology (see
[R, Section 9.2] or [EKMM, Chapter IX]):

Definition 4.1: Let B be an associative algebra over a commutative S-algebra A.
Then we define (in the derived category of B ∧A Bop-modules):

THHA(B) = TorB∧ABop

(B,B)

Definition 4.2: Let B be an associative algebra over a commutative S-algebra A.
We say that the structure extension A→ B is formally symmetrically étale if the canonical
map ζ : B → THHA(B) is a weak equivalence.

Assume now that B is an A-algebra, where A and B are ordinary rings and A is
commutative. Then we have the HA-algebra structure on HB. We define topological
Hochschild homology of B as THHHA(HB). But of course this leads to problems with
the graded algebraic case because we do not know what HB is for a graded ring B. Define
THHA

i (B) = πi(THHHA(HB)), which has precise meaning in the ungraded case. Then
THHA

1 (B) ⊃ HH1(B), where HH denotes the ordinary Hochschild homology of B over A
and this comes from the spectral sequence relating Hochschild and topological Hochschild
homologies (see [P]). Hochschild homology theory has perfect meaning also in the graded
case and so we can say something about the graded rings using Hochschild homology
groups. Assume that B is a graded ring which is an algebra over a commutative ring
A. We treat A as a graded object concentrated in degree 0. Moreover assume that B is
commutative and trivial in negative degrees. Then we have:

Lemma 4.3: If B is nontrivial in positive degrees and B0 = A then HH1(B) is
nontrivial.

Proof: The first Hochschild homology group of B is the same as the group of Kähler
differentials of B over A. If Bk is the lowest positive nontrivial gradation of B then
(Ω1

B/A) ⊃ Bk ̸= 0. This follows directly from the definition of Kähler differentials. If
b ∈ Bk is of the form b1 · b2 for some b1, b2 ∈ B then either b1 ∈ B0 or b2 ∈ B0 by our
choice of k. Hence there are no relations except linearity over A between generators db of
(Ω1

B/A) for the elements b ∈ Bk.♣

The result of 4.3 allows one to think about B as being not formally symmetrically
étale over A. Observe that in the lemma above the assumption on the 0-grade is irrelevant.
By some more effort one can check that either 0 ̸= (Ω1

B0/A
) ⊂ (Ω1

B/A) or (Ω
1
B0/A

) = 0 and

then by the same argument as previously we get (Ω1
B/A) ⊃ Bk ̸= 0.

The lemma above shows the way in which we can approach the similar problem for
ring spectra. The key ingredient is hidden in the spectrum ΩB/A of differential forms of B
over A defined as a cofibrant replacement in the category of B-bimodules of the homotopy
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fiber of the multiplication map µ : B∧ABop → B. The map µ splits in the stable homotopy
category and hence the long exact sequence of homotopy groups for the fibration
4.3.1.

ΩB/A → B ∧A Bop → B

splits into short exact sequences of homotopy groups.
Assume that B is a connective A-algebra where A = HR is an Eilenberg - Mac Lane

spectrum of a commutative ring R. Let B0 = π0(B). Then we have:

Lemma 4.4: If B is connective and formally symmetrically étale over A = HR then
B0 is a commutative ring.

Proof: Because B is connective we know that spectrum B ∧A Bop is connective and
π0(B ∧A Bop) = B0 ⊗R Bop

0 . But this implies that THHA(B) is connective with the 0th
homotopy group equal to B0 ⊗B0⊗Bop

0
B0 = B0ab

. Hence in degree 0 the map ζ from 4.2
induces an abelianization map B0 → B0ab

. It has to be an isomorphism by assumption so
B0 has to be commutative.♣

The lemma above will not be used in the rest of this section, but should be treated
as a first test for a connective spectrum if we want it to be formally symmetrically étale
over an Eilenberg - Mac Lane spectrum. We will impose rather strong assumptions on the
ring extension R → B0. The reason for this comes from the observation that the relation
between algebraic étalness from ring theory and our topological étalness is not clear. In
the present note we want to concentrate on the question of whether higher homotopical
phenomena can occur in our extensions. Hence we will assume that TorRi (B0, B0) = 0 for
i ̸= 0 and the multiplication map B0⊗R Bop

0 → B0 is an isomorphism. The main example
we have in mind is, of course, when B0 = R. Recall after [R, Definition 9.3.1], that a map
of S-algebras A→ B is called smashing if the algebra multiplication µ : B ∧A Bop → B is
a weak equivalence. It is not hard to see that our hypothesis is equivalent to saying that
HR → HB0 is smashing and smashing implies étalness in the form considered here for
Eilenberg - Mac Lane spectra (see [R, Section 9.3]). Hence we can say that we consider
only such maps HR → B which induce formally symmetrically étale maps HR → HB0.
Then we have:

Theorem 4.5: Assume that B is a connective HR-algebra which satisfies:
i. TorRi (B0, B0) = 0 for i ̸= 0,
ii. The multiplication map B0 ⊗R Bop

0 → B0 is an isomorphism.
If B is a formally symmetrically étale extension of HR then B is the Eilenberg - Mac

Lane spectrum B = HB0.

Proof. Let k be the smallest natural number bigger than 0 for which πk(B) ̸= 0. Then
from the assumptions on B0 and the spectral sequence for π∗(B ∧HR Bop) we know that
π0(B∧HRBop) = B0⊗RBop

0 , πi(B∧HRBop) = 0 for i = 1, ..., k−1 and πk(B∧HRBop) =
(πk(B)⊗R B0)⊕ (B0 ⊗R πk(B)). There is a map

i : B → B ∧HR Bop

11



which composed with multiplication

µ : B ∧HR Bop → B

is trivial. It is the topological counterpart of the map X → X ⊗X in algebra, which takes
x ∈ X to x ⊗ 1 − 1 ⊗ x and defines the universal derivation. X denotes here an algebra
over a commutative ring over which we take the tensor product. The map i is defined as
the difference of maps idB ∧ 1B and 1B ∧ idB . Of course µ ◦ i = 0 and hence i factors as
j ◦β through the homotopy fiber j : ΩB/A → B ∧HRBop of µ. Let α : Sk → B represent a
nontrivial element in πk(B). Then i◦α is nontrivial on homotopy groups by the formula for
πk(B ∧HR Bop) and hence β ◦ α is also nontrivial. It means that ΩB/A is not contractible
and has nontrivial k-th homotopy group.

We know that B, B ∧HR Bop and ΩB/A are connective and the latter spectrum is
(k − 1)-connected by the assumption on B0 and the splitting of 4.3.1 on the level of
homotopy groups. Smashing the sequence 4.3.1 with B over B ∧HR Bop we get a cofiber
sequence

B ∧B∧HRBop ΩB/A → B
ζ−→ THHHR(B)

Our proof will be finished if we show that B ∧B∧HRBop ΩB/A is not weakly equivalent to
a point. But again we can use the spectral sequence for calculating homotopy groups of
this spectrum with the second page given by the formula

E2
s,t = Tor

π∗(B∧HRBop)
s,t (π∗(B), π∗(ΩB/A))

Taking into account the connectivity of ΩB/A and assumptions on B we immediately read
that πk(B ∧B∧HRBop ΩB/A) is equal to π∗(B) ⊗π∗(B∧HRBop) π∗(ΩB/A) in degree k and
B ∧B∧HRBop ΩB/A is (k − 1)-connected.

Hence while writing a projective resolution P0 ← P1 ← ... of B∗ over π∗(B ∧HR Bop)
we can assume that we have only one copy of B0⊗R B0 in dimension 0 in P0 and all other
terms of P0 and all Pis for i > 0 are in degrees higher than k − 1. But then of course the
group πk(B ⊗(B∧HRBop) ΩB/A) is equal to (B0 ⊗R B0)⊗B0⊗RB0 πk(ΩB/A) = πk(ΩB/A) by
dimension reasons and this latter group is nontrivial, as was shown before.♣

Remark 4.6: In the commutative case Rognes defined the notion of formally étale
extension A → B using the notion of topological André-Quillen homology. We do not
recall it here because the property of being formally symmetrically étale is equivalent to
formally étale for connective algebras. So far we are not able to analyze the non-connective
cases, where we know that these two notions are different by Mandell’s example. The
commutative case of Theorem 4.5 was proved in [TV, Proposition 5.2.8].

It is plausible to suspect that Theorem 4.5 is true for HR-algebras which are bounded
below. But separable extensions are formally symmetrically étale ([R, Lemma 9.2.6]) so
our Example 3.5 shows that we need some stronger assumption on π0. The commutative
case seems to be easier. We have the following lemma, which in the commutative case
extends the algebraic result from 4.3 to cover algebras which are bounded below.
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Lemma 4.7: Assume that B is a graded commutative A-algebra, B0 = A, Bk is
nontrivial and Bi = 0 for i < k, where k is some negative number. Then HH1(B) is
nontrivial.

Proof: As previously we will use the fact that HH1(B) is equal to the B-module of
Kähler differentials and the latter module is the same as I/I2, where I is the kernel of
the multiplication map B ⊗A B → B. Assume that x ∈ Bk and dx = x ⊗ 1 − 1 ⊗ x is in
I2. Then by the argument from the beginning of the proof of 3.2 and the fact that k is
the minimal grade with nontrivial Bk we get immediately that x can be expressed as an
A-combination of elements of the form x1 ·x2 where both x1 and x2 have negative grading.
Hence if for every x ∈ Bk the differential dx is trivial in HH1(B) then all elements of
Bk are sums of multiples of elements of higher but negative degree. We can extend this
reasoning easily to other negative degrees of B by induction and get that if the differential
dx = 0 for x ∈ Bs, s negative, then x can be expressed as a sum of finite multiples of
elements whose degrees are negative but strictly higher than s. This implies that either
we have nontrivial elements of negative degree in HH1(B) or the negative part of B is
generated over A by Bt, where Bt is the highest negative nontrivial grade of B. But if this
is the case then the only relations among dx for x ∈ Bt are relations of A linearity. Hence
we have nontrivial elements in degree t of HH1(B).♣

Treating 4.7 as evidence we state the following conjecture:

Conjecture 4.8: Theorem 4.5 is true for HR-algebras which are commutative and
bounded below.

We want to finish with a short comment explaining more why 4.7 can be seen as
evidence for the above conjecture. The proof of 4.7 suggests to study I/I2 and to prove its
nontriviality. In the homotopical world we can try to mimic this approach by considering
the smash product over B ∧A Bop of the fibration sequence ΩB/A → B ∧A Bop → B with
ΩB/A. Then we get the cofiber sequence

ΩB/A ∧ ΩB/A
m−→ ΩB/A → B ∧ ΩB/A

The map m should be interpreted as a homomorphism I2 → I in the algebraic world.
Our conjecture will be proved if we show that m is not surjective on homotopy groups.
Arguments similar to those in the proof of 4.7 show that our conjecture is true if πi(B) is
flat over R for any i. But in the general case the argument has to be more sophisticated.
The difficulty comes from the problem of how one can relate multiplication of homotopy
classes to the structure of the spectral sequence, which we use for calculating homotopy
groups of smash products.
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