74

Chapter II. Linear mappings

2. Consider two subspaces E_1 and E_2 of E. Establish the relation

$$E_i^{\perp} := Anh(E_i)$$

$$(E_1 + E_2)^{\perp} = E_1^{\perp} \cap E_2^{\perp}.$$

3. Given a vector space E consider the mapping $\Phi: E \to (E^*)^*$ defined by

$$\Phi_a(f) = f(a) \quad a \in E, f \in E^*$$

Prove that Φ is injective.

4. Suppose $\pi: E \to E$ and $\pi^*: E^* \leftarrow E^*$ are dual mappings. Assume that π is a projection operator in E. Prove that π^* is a projection operator in E^* and that

$$\operatorname{Im} \pi^* = (\ker \pi)^{\perp}, \quad \operatorname{Im} \pi = (\ker \pi^*)^{\perp}.$$

Conclude that the subspaces Im π , Im π^* and ker π , ker π^* are dual pairs.