74 ## Chapter II. Linear mappings 2. Consider two subspaces E_1 and E_2 of E. Establish the relation $$E_i^{\perp} := Anh(E_i)$$ $$(E_1 + E_2)^{\perp} = E_1^{\perp} \cap E_2^{\perp}.$$ 3. Given a vector space E consider the mapping $\Phi: E \to (E^*)^*$ defined by $$\Phi_a(f) = f(a) \quad a \in E, f \in E^*$$ Prove that Φ is injective. 4. Suppose $\pi: E \to E$ and $\pi^*: E^* \leftarrow E^*$ are dual mappings. Assume that π is a projection operator in E. Prove that π^* is a projection operator in E^* and that $$\operatorname{Im} \pi^* = (\ker \pi)^{\perp}, \quad \operatorname{Im} \pi = (\ker \pi^*)^{\perp}.$$ Conclude that the subspaces Im π , Im π^* and ker π , ker π^* are dual pairs.