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Abstract

We study Legendrian singularities arising in complex contact ge-
ometry. We define a one-parameter family of bases in the ring of Leg-
endrian characteristic classes such that any Legendrian Thom polyno-
mial has nonnegative coefficients when expanded in these bases. The
method uses a suitable Lagrange Grassmann bundle on the product
of projective spaces. This is an extension of a nonnegativity result
for Lagrangian Thom polynomials obtained by the authors previously.
For a fixed specialization, other specializations of the parameter lead
to upper bounds for the coefficients of the given basis. One gets also
upper bounds of the coefficients from the positivity of classical Thom
polynomials (of singularities of mappings), obtained previously by the
last two authors.
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1 Introduction

The aim of the present paper (which is a continuation of [9], [21] and [18]) is
to study the positivity of Legendrian Thom polynomials. The pioneering pa-
pers [8] of Griffiths and [7] of Fulton and Lazarsfeld investigated numerical
positivity related to ample vector bundles in differential and algebraic geom-
etry, respectively. Their various variants are nowadays widely investigated
in algebraic geometry. We refer to the monograph [17] for more detailed ac-
count. Also, the recent paper [4] gives a combinatorial interpretation for the
coefficients of certain Thom-like polynomials, providing further motivation
for studying general positivity phenomena.

Our main goal is to define a certain one-parameter family of bases in the
ring of Legendrian characteristic classes. Any Legendrian Thom polynomial
has nonnegative coefficients when expanded in any member of this family
(Theorems 8 and 10).

The main difference, comparing with the previous papers (in particu-
lar, with [9] and [18, Remark 14]) is the definition of Legendre singularity
classes to which these Thom polynomials are attached. They are introduced
as closed algebraic subsets in the space parametrizing pairs of Legendrian
submanifolds in the contact space (see Lemma 1). Regardless of the technical
differences the main theorem of [18] follows from Theorem 10 by specializa-
tion of the parameter t to 0. As in [9], [21] and [18], when we study Thom
polynomials of commonly bounded degree, it is enough to deal with finite
jets of germs of submanifolds through the origin.

The principal technique involved in the proof of these theorems is trans-
versality with respect to some stratification of a Lagrange Grassmann bun-
dle. This is a subject of Section 6. The key technical result is Theorem 5.
We show that the intersection (in the jet bundle) of a Legendre singular-
ity class with the preimage of the closue of a stratum of the stratification,
is represented by a nonnegative cycle. In fact, for our purposes we need
a certain Lagrange Grassmann bundle over the product of two projective
n-spaces, see Theorem 8. A concrete form of the resulting one-parameter
family of bases follows from degeneracy locus formulas from [13], [16], [20]
and a formula of Kazarian.

In Section 8, we examine the parameter of the constructed family of
bases, and give a precise proof of a result announced in [18], describing
algebraically the basis corresponding to the value of the parameter equal to
1 (see Theorem 11).

Let us fix the value of the parameter. It turns out that the nonnegativity
of coefficients of the bases for some other values of the parameter can imply
upper bounds of the coefficients in the basis for the given parameter. This
is a subject of Section 9.

In Section 10, we show (Proposition 13) that for nonempty stable singu-
larity classes the corresponding Legendrian (and Lagrangian) Thom poly-
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nomials are nonzero. This is an amelioration of the main result of [18]. The
proof uses the fact [21] that the Thom polynomials for functions Cn → C
are nonzero for nonnempty singularity classes. We also show how this last
result gives some upper bounds on the coefficients of Legendrian Thom poly-
nomials in the basis from Theorem 11.

In Section 11, we list some examples of Legendrian Thom polynomials
expanded in different bases from the family.

In the Appendix, we prove some new positivity result for the intersection
coefficients in the Lagrange Grassmann bundle. This result concerns the
stratification (14), transverse to the one studied in Section 6. It relies on
a“large group” action from [1].

2 Some Legendrian geometry

Fix n ∈ N. Suppose for the moment that W is a vector space of dimension
n, and ξ is a vector space of dimension one. Let

V := W ⊕ (W ∗ ⊗ ξ) (1)

be the standard symplectic space equipped with the twisted symplectic form
ω ∈ Λ2V ∗⊗ ξ. We study the germs at the origin of the Legendrian subman-
ifolds in the standard contact space

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ ,

or equivalently the germs of the Lagrangian submanifolds in the symplectic
space V . Any Legendrian submanifold in V ⊕ ξ is determined by its pro-
jection to V and any Lagrangian submanifold in V lifts to V ⊕ ξ, see [2,
Proposition p. 313]. Therefore we will perform all the constructions in the
realm of symplectic geometry.

Two Lagrangian submanifolds, if they are in generic position, intersect
transversally. The singular relative positions can be divided into Legendrian
singularity classes. To classify all the possible relative positions it suffices
consider only two types of submanifolds:

(i) linear subspaces; they are parametrized by Lagrangian Grassmannian
denoted by LG(V, ω);

(ii) the submanifolds which have the tangent space at the origin equal to
W ; they are the graphs of the differentials of the functions f : W → ξ
satisfying df(0) = 0 and d2f(0) = 0, see [18, Lemma 2].

The group of symplectomorphisms of V acts on the pairs of Lagrangian
submanifolds. By the following lemma, we can restrict our attention only
to the submanifolds of the types (i) and (ii).
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Lemma 1 Any pair of Lagrangian submanifolds is symplectic equivalent to
a pair (L1, L2) such that L1 is a linear Lagrangian subspace and the tangent
space T0L2 is equal to W .

Proof. The lemma follows essentially from the Darboux Theorem (see [2],
Theorem, p. 287). Indeed, it follows from this theorem that any Lagrangian
submanifold is symplectomorphic to a linear one (given by vanishing of the
p-coordinates in the notation of the theorem). We apply this to the first
Lagrangian submanifold, getting a linear L′1. Applying then an appropriate
rotation, we get the tangency condition for L2, equal to the rotated second
Lagrangian submanifold. The image L1 of L′1 under this rotation is linear.
The pair (L1, L2) satisfies the assertion of the lemma. 2

Let us fix a suitable large k. We identify two Lagrangian submanifolds if
the degree of their tangency at 0 is greater than k. The equivalence class will
be called “a k-jet of a submanifold”. The k-jets of submanifolds satisfying
the condition (ii) are in bijection with elements of the vector space

k+1⊕
i=3

Symi(W ∗)⊗ ξ .

We want to describe a space parametrizing all possible relative positions
of Lagrangian submanifolds. A suggestion of Kazarian and Lemma 1 justifies
the following definition. We denote by Jk(W, ξ) the set of pairs (L1, L2) of
k-jets of Lagrangian submanifolds of V such that L1 is a linear space and
T0L2 = W . Let

π : Jk(W, ξ)→ LG(V, ω) (2)

be the projection to the first factor. Clearly, π is a trivial vector bundle
with the fiber equal to:

k+1⊕
i=3

Symi(W ∗)⊗ ξ .

Remark 2 In [18], we considered the relative position of the Lagrangian
submanifolds with respect to the fixed linear space W ∗. We obtained a jet
bundle over LG(V ) which was not a trivial bundle, and we had to deform
that bundle to its linear part. Fixing the tangent space of the nonlinear sub-
manifold and moving the second linear space, is an important simplification
comparing with [18].

We are interested in a larger group than just the group of symplectomor-
phisms, namely the group of (complex) contact automorphisms of V ⊕ ξ. It
acts on the pairs of Legendrian submanifolds in V ⊕ ξ. Again by [2, Propo-
sition p. 313], we obtain an action on the pairs of Lagrangian submanifolds.
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In particular, we take into account the automorphisms of V which trans-
port the symplectic form ω to a proportional one. An example of such an
automorphism is given by φt defined by

φt(q, p) = (q, tp), where q ∈W, p ∈W ∗ ⊗ ξ and t ∈ C∗.

By a Legendre singularity class we mean a closed algebraic subset

Σ ⊂ Jk(Cn,C) ,

invariant with respect to holomorphic contactomorphisms of C2n+1. Addi-
tionally, we assume that the singularity class Σ is stable with respect to
enlarging the dimension of W , as in [21, Sect. 2]. Unfortunately, we do
not know any place in literature where the relation between cohomological
stability and the infinitesimal stability in the sense of see [2, Sect. 6] is
discussed. This problem is treated in [5, Sect. 7.2] in a different context. It
seems to be a common knowledge that infinitesimal stability implies coho-
mological stability. On the other hand, we would like to mention that our
main results: Theorems 8 and 10 hold without the stability assumption.

3 The jet bundle Jk(W, ξ)

The vector space ξ may have no distinguished coordinate. It happens so for
example when we deal with a fiber of a vector bundle. In other words we
have a nontrivial action of C∗ on Jk(Cn,C). Now we repeat the construction
of the space Jk(W, ξ) parametrizing the relative positions of two Lagrangian
submanifolds, assuming that ξ is a line bundle over some base space. We
could have used the universal base BU(1) but it is more convenient to work
with bundles defined over various base spaces. Also, it will be useful to
assume that W is a (possibly nontrivial) vector bundle.

Let X be a topological space, W a complex rank n vector bundle over
X, and ξ a complex line bundle over X. The fibers of W , ξ, V over a point
x ∈ X are denoted by Wx, ξx, Vx. Let

τ : LG(V, ω)→ X (3)

denote the Lagrange Grassmann bundle parametrizing Lagrangian linear
submanifolds in Vx, x ∈ X. We have a relative version of the map (2):

π : Jk(W, ξ)→ LG(V, ω) . (4)

The space Jk(W, ξ) fibers over X. It is equal to the pull-back:

Jk(W, ξ) = τ∗

(
k+1⊕
i=3

Symi(W ∗)⊗ ξ

)
. (5)
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In the following, the pull-backs to LG(V, ω) of the bundles W , V and ξ will
be denoted by the same letters, if no confusion occurs. Since any changes
of coordinates of W and ξ induce holomorphic contactomorphisms of V ⊕ ξ,
any Legendre singularity class Σ defines a cycle

Σ(W, ξ) ⊂ Jk(W, ξ). (6)

We will study the classes1 defined by the cycles Σ(W, ξ).

4 Legendrian characteristic classes

The tautological bundle over LG(V, ω) is denoted by RW,ξ, or by R for short.
The symplectic form ω gives an isomorphism

V ∼= V ∗ ⊗ ξ . (7)

There is a tautological sequence of vector bundles on LG(V, ω):

0→ R→ V → R∗ ⊗ ξ → 0 . (8)

Consider the virtual bundle

A := W ∗ ⊗ ξ −RW,ξ . (9)

Using the sequence (8), we get the relation

A+A∗ ⊗ ξ = 0 . (10)

The Chern classes ai = ci(A) generate the cohomology

H∗(LG(V, ω),Z) ∼= H∗(Jk(W, ξ),Z)

as an algebra over H∗(X,Z).

Let us fix an approximation of BU(1) =
⋃
n∈N Pn, that is we set X = Pn,

ξ = O(1). Let W = 1n be the trivial bundle of rank n. Then the cohomology
ring

H∗(LG(V, ω),Z) ∼= H∗(Jk(W, ξ),Z)

is isomorphic to the ring of Legendrian characteristic classes for degrees
smaller than or equal to n. The element [Σ(W, ξ)] of H∗(Jk(W, ξ),Z), is
called the Legendrian Thom polynomial of Σ, and is often denoted by T Σ.
It is written in terms of the generators ai and s = c1(ξ), (cf. [9, Sect. 3.4],
[10, Sect. 4]).

1In this paper, whenever we speak about the classes of algebraic cycles, we always
mean their Poincaré dual classes in cohomology.
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Remark 3 The ring of Legendrian characteristic classes is the quotient of
the polynomial ring

Z[a1, a2, a3, . . . ;u]

by the relations coming from the identity (10). After inverting 2 and apply-
ing the twist by ξ−

1
2 we obtain the ring of Lagrangian classes extended by

one additional free variable t, that is

Z[
1
2

][a′1, a
′
2, a
′
3, . . . ; t]/I ,

where I is generated by the polynomials

(a′i)
2 + 2

i∑
k=1

(−1)ka′i+ka
′
i−k, i > 0 .

The even Chern classes a′2i are expressed by odd ones and this ring is just
the polynomial ring

Z[
1
2

][a′1, a
′
3, a
′
5, . . . ; t] .

A similar procedure can be applied to the untwisted variables ai.

5 Cell decompositions of the Grassmann bundle

We describe two “transverse” cell decompositions of the Lagrange Grass-
mannians.

To begin with, let ξ, α1, α2, . . . , αn be vector spaces of dimensions equal
to one and let

W :=
n⊕
i=1

αi , V := W ⊕ (W ∗ ⊗ ξ) . (11)

We have a twisted symplectic form ω defined on V with values in ξ. The
Lagrangian Grassmannian LG(V, ω) is a homogeneous space with respect
to the group action of the symplectic group Sp(V, ω) ⊂ End(V ). Fix two
“opposite” standard isotropic flags in V :

F+
h :=

h⊕
i=1

αi , F−h :=
h⊕
i=1

α∗n−i+1 ⊗ ξ (12)

for h = 1, 2, . . . , n and consider two subgroups B± ⊂ Sp(V, ω) which are the
Borel groups preserving the flags F±• . The orbits of B± in LG(V, ω) form
two “opposite” cell Ω±-decompositions {ΩI(F±• , ξ)} of LG(V, ω) (Bruhat
decompositions), indexed by strict partitions

I ⊂ ρ := (n, n− 1, . . . , 1)
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(cf. [19]). The cells of the Ω+-decomposition are transverse to the cells of
the Ω−-decomposition.

We pass now to the relative version of the above decompositions.
The description just presented is functorial with respect to the auto-

morphisms of the lines ξ and αi’s, (they form a torus (C∗)n+1). Thus the
construction of the cell decompositions can be repeated for bundles ξ and
{αi}ni=1 over any base X. We obtain a Lagrange Grassmann bundle

τ : LG(V, ω)→ X

and a group bundle (group scheme over X)

Sp(V, ω)→ X

together with two subgroup bundles B± → X. Moreover, LG(V, ω) admits
two (relative) stratifications

{ΩI(F±• , ξ)→ X}strict I⊂ρ .

Assume that X = G/P is a compact manifold, homogeneous with re-
spect to an action of a linear group G. Then X admits an algebraic cell
decomposition {σλ} (it is again a Bruhat decomposition). The subsets

Z−Iλ := τ−1(σλ) ∩ ΩI(F−• , ξ) (13)

form an algebraic cell decomposition of LG(V, ω), called Z−-decomposition
or distinguished decomposition in the following. The classes of their closures
give a basis of homology, called Z−-basis. Note that each Z−Iλ is transverse
to each stratum ΩJ(F+

• , ξ), where J ⊂ ρ is a strict partition.
Similarly, we define the subsets

Z+
Iλ := τ−1(σλ) ∩ ΩI(F+

• , ξ) . (14)

which form a Z+-decomposition and give rise to the corresponding Z+-basis
of the cohomology.

Example 4 If X = P1, W = 1, ξ = O(d) (for d > 0), then LG(V, ω) is the
Hirzebruch surface Σd which can be presented as the sum of the space of
the line bundle ξ and the section at infinity,

Σd = ξ ∪P1
∞ .

Then P1
0, the zero section of the bundle ξ, is a stratum of the Ω+-decomposition

and the section at infinity P1
∞ is a stratum of the Ω−-decomposition. For the

cell decomposition of X = P1 = C∪{∞}, we obtain two cell decompositions
of Σd. The closures of the one-dimensional cells are the following:{

Z +
Iλ

}
=
{
τ−1(∞), P1

0

}
,

{
Z −Iλ

}
=
{
τ−1(∞), P1

∞

}
.
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Two resulting bases of cohomology are mutually dual with respect to the
intersection product.

The cycles of Z+-decomposition have the following property: any effec-
tive cycle has a nonnegative intersection number with them. This is not true
for the elements of Z−-decomposition: for example, the self-intersection of
P1
∞ is equal to −d.

6 Positivity in the jet bundle

We pass now to a nonnegativity result on the Legendrian Thom polynomials
and the Z−-decomposition. We recall that our goal is to study cycles Σ(W, ξ)
in:

Jk(W, ξ) = τ∗

(
k+1⊕
i=3

Symi(W ∗)⊗ ξ

)
.

To abbreviate the notation, we set Jk(W, ξ) = J.
This vector bundle is equipped with a B+-action, i.e., an appropriate

map
B+ ×X J→ J

over X.
A Legendre singularity class Σ defines the subset Σ(W, ξ) ⊂ J, which is a

Zariski-locally trivial fibration overX. Moreover, Σ(W, ξ) is preserved by the
action of B+ since this group consists of holomorphic symplectomorphisms
preserving W :

π τ
Σ(W, ξ) ⊂ J � LG(V, ω) � X

	 	 	
B+ B+ Sp(V, ω)

We now state the main technical result of the present paper.

Theorem 5 Suppose that the vector bundle J is globally generated. Then, in
J, the intersection of Σ(W, ξ) with the closure of any π−1(Z−Iλ) is represented
by a nonnegative cycle.

This result is, in fact, true for any effective B+-invariant cycle on J, Zariski-
locally trivial fibered overX, taken instead of Σ(W, ξ). The proof is modelled
on the techniques of [12].

Before proving the theorem, we shall establish some preliminary result.
For a subset Y ⊂ J and a global section s ∈ H0(J), we denote by s + Y
the fiberwise translate of Y by s. We will deform the cycle Σ(W, ξ) using
a fiberwise translate. The construction is done for each stratum ΩJ(F+

• , ξ)
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separately. Fix such a stratum Ω = ΩJ(F+
• , ξ). Denote by J|Ω = π−1Ω the

restriction of the bundle to the stratum and set

Ξ := Σ(W, ξ) ∩ π−1Ω . (15)

We need the following lemma which is a variant of the Bertini-Kleiman
tranversality theorem [12].

Lemma 6 Suppose that the vector bundle J is globally generated. Let Y ⊂
J|Ω be a subvariety. Then there exists an open, dense subset U ⊂ H0(J)
such that for any section s ∈ U , the translate s+ Ξ has proper intersection
with Y .

Proof. Let
q : H0(J)× Ξ→ J|Ω

be the fiberwise translate. We claim that this map is flat (in fact, it is a
fibration). The question is local. We find an open set X ′ ⊂ X such that
the bundles αi|X′ and ξ|X′ are trivial. Over X ′ the set Ξ is the product of
X ′ and some variety. Therefore, it is enough to assume that X is a point.
Further, note that Ξ→ Ω is a fibration since Ω is homogeneous with respect
to B+ and Ξ is a B+-invariant subset of J. Thus the question reduces to a
single fiber of J. Since J is globally generated, for any y ∈ Ω the fiber Jy is
homogeneous for the action of H0(J). The action map

q|H0(J)×Ξy
: H0(J)× Ξy → Jy

is a trivial fibration with the fiber isomorphic to Ξy × ker(H0(J) → Jy). It
follows that q is a fibration.

Applying [12, Lemma 1], the assertion of the lemma follows. 2

Proof of Theorem 5
For a strict partition J ⊂ ρ, we set

JJ := π−1(ΩJ(F+
• , ξ)) . (16)

Applying Lemma 6, we get an open dense subset UJ ⊂ H0(J) such that for
s ∈ UJ the intersection(

s+ (Σ(W, ξ) ∩ JJ)
)
∩
(
π−1(Z−Iλ) ∩ JJ

)
is proper inside JJ . We now pick

s ∈
⋂

strict J⊂ρ
UJ ,

and set
Σ(W, ξ)′ := s+ Σ(W, ξ) . (17)
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Since the cycle π−1(Z−Iλ) is transverse to the stratification {JJ}strict J⊂ρ of
J, an easy dimension count shows that π−1(Z−Iλ) intersects properly Σ(W, ξ)′

in J.
Theorem 5 now follows since by [6, Sect. 8.2] the intersection

[Σ(W, ξ)] · [π−1(Z−Iλ)] = [Σ(W, ξ)′] · [π−1(Z−Iλ)]

is represented by a nonnegative cycle. 2

7 A family of bases in which any Legendrian Thom
polynomial has positive expansion

We shall apply Theorem 5 in the situation when all αi are equal to the same
line bundle α (i.e., W = α⊕n) and α−m ⊗ ξ is globally generated for m ≥ 3.

Example 7 We shall consider the following three cases: the base is always
X = Pn and

1.
ξ1 = O(−2) , α1 = O(−1) ,

2.
ξ2 = O(1) , α2 = 1 ,

3.
ξ3 = O(−3) , α3 = O(−1) ,

We obtain symplectic bundles Vi = α⊕ni ⊕(α∗i⊗ξi)⊕n with twisted symplectic
forms ωi for i = 1, 2, 3.

These cases were for the authors the key examples supporting their work-
ing conjecture that the assertion of Theorem 8 holds true.

Case 1 was the subject of [18, Remark 14], where the basis related to
the distinguished cell decomposition of LG(V1, ω1) was investigated. In this
case, for degrees ≤ n, the cohomology H∗(LG(V1, ω1),Z[1

2 ]) is isomorphic
to the ring of Legendrian characteristic classes tensored by Z[1

2 ].
In Case 2, the integral cohomology H∗(LG(V2, ω2),Z) is isomorphic to

the ring of Legendrian characteristic classes up to degree n. The distin-
guished cell decomposition of LG(V2, ω2) gives us another basis of cohomol-
ogy.

In Case 3, the cohomology of LG(V3, ω3) is isomorphic, up to degree
n, to the ring of Legendrian characteristic classes, provided we invert the
number 3 this time.

The positivity property in Case 1 was known to us (see [18, Remark 14]),
whereas in Cases 2 and 3, it was Kazarian who suggested the positivity. His
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conjecture was supported by computation of all the Thom polynomials up
to degree seven.

In general, H∗(LG(V, ω),Q) is isomorphic to the ring of Legendrian
characteristic classes up to degree dimW if ξ is nontrivial. The case of
W = W (p,q), ξ = ξ(p,q) and the corresponding V = V (p,q), where

ξ(p,q) = ξ⊗p2 ⊗ ξ⊗q3 and α = α(p,q) = α⊗p2 ⊗ α
⊗q
3 = α⊗q3

(p, q are integers), will be used in Section 8.

To overlap all these three cases we consider the product

X := Pn ×Pn (18)

and set
W := p∗1O(−1)⊕n , ξ := p∗1O(−3)⊗ p∗2O(1) , (19)

where pi : X → Pn, i = 1, 2, are the projections. Restricting the bundles W
and ξ to the diagonal, or to the factors we obtain the three cases considered
above. We should keep in mind that X is an approximation of the classify-
ing space B(U(1) × U(1)). We fix it because we apply algebraic geometry
methods.

The space LG(V, ω) has a distinguished cell decomposition Z−Iλ where I
runs over strict partitions contained in ρ, and λ = (a, b) with a and b natural
numbers smaller than or equal to n. The classes of closures of the cells of
this decomposition give a basis of the homology of LG(V, ω). The dual basis
of cohomology (in the sense of linear algebra) is denoted by

eI,a,b = [Z−I,a,b]
∗ . (20)

By reasons of geometry, it is clear that the basis {eI,a,b} consists of the
classes represented by the cycles Z+

I,a,b.
Let v1 and v2 be the first Chern classes of p∗1(O(1)) and p∗2(O(1)). By

the definition of Z+
I,a,b, in H∗(LG(V, ω),Z), we have

eI,a,b = eI,0,0 v
a
1v
b
2 . (21)

Moreover, we have
eI,0,0 = [ΩI(F+

• , ξ)] . (22)

With X, W and ξ as in (18) and (19), we have

Theorem 8 Let Σ be a Legendre singularity class. Then [Σ(W, ξ)] has non-
negative coefficients in the basis {eI,a,b}.
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Proof. Let
ι : LG(V, ω)→ Jk(W, ξ)

be the zero section, and

ι∗ : H∗(Jk(W, ξ),Z)→ H∗(LG(V, ω),Z)

be the induced map on cohomology. We write

ι∗[Σ(W, ξ)] =:
∑
I,a,b

γI,a,b[Z+
I,a,b] , (23)

where γI,a,b are integers. We claim that the coefficients γI,a,b are nonnega-
tive. These coefficients are equal to

ι∗[Σ(W, ξ)] · [Z−I,a,b] (intersection in LG(V, ω) ).

By the functoriality of the intersection product, the numbers γI,a,b are equal
to

[Σ(W, ξ)] · [π−1(Z−I,a,b)] (intersection in J).

The vector bundle J on LG(V, ω) is equal to

τ∗

k+1⊕
j=3

Symj(W ∗)⊗ ξ

 = τ∗

k+1⊕
j=3

Symj(1n)⊗ p∗1O(j−3)⊗ p∗2O(1)

 .

We see that J is globally generated. By Theorem 5, the desired intersections
in J are nonnegative. 2

The following computation will be needed later.

Example 9 By [20, Theorem 9.3] (see also [13, Cor. 5]) if ξ = 1, I = {h},
then

[Ωh(F+
• ,1)] = ch(R∗ − F+

n+1−h) .

Hence for a general ξ, by passing to its square root, we have

[Ωh(F+
• , ξ)] = ch(R∗ ⊗ ξ

1
2 −F+

n+1−h ⊗ ξ
− 1

2 ) = ch((R∗ ⊗ ξ −F+
n+1−h)⊗ ξ−

1
2 ) .

Note that for any virtual bundle E of dimension h−1 and for any line bundle
ζ, we have ch(E ⊗ ζ) = ch(E). Hence

[Ωh(F+
• , ξ)] = ch(R∗ ⊗ ξ − F+

n+1−h) .

In our situation, (W = α⊕n), the above formula can be written in the form

[Ωh(F+
• , ξ)] = ch(R∗ ⊗ ξ −W + α⊕h−1)

= ch(W ∗ ⊗ ξ −R+ α⊕h−1)

= ch(A+ α⊕h−1) .
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8 The parameter p/q and the basis for p = q = 1

Fix a Legendre singularity class Σ. By Theorem 8, we know that the Thom
polynomial of Σ, evaluated at the Chern classes of

A = W ∗ ⊗ ξ −R

and c1(ξ) = v2− 3v1, is a nonnegative Z-linear combination of the following
form:

T Σ =
∑
I,a,b

γI,a,b eI,a,b =
∑
I,a,b

γI,a,b[ΩI(F+
• , ξ)]va1v

b
2 .

We want to find an additive basis of the ring of Legendrian characteristic
classes with the property that any Legendrian Thom polynomial is a non-
negative combination of basis elements. To this end, we take a geometric
model of the classifying space: LG(V (p,q), ω(p,q)) (see the previous section),
and the Z+-basis which is dual to the Z−-basis. More precisely, dividing
the cohomology ring H∗(LG(V, ω),Q) by the relation

q · v1 = p · v2 , (24)

that is specializing the parameters to v1 = p · t, v2 = q · t, we obtain the ring
H∗(LG(V (p,q), ω(p,q)),Q), isomorphic to the ring of Legendrian characteristic
classes in degrees ≤ n (provided that c1(ξ) = v2 − 3v1 is not specialized to
0).

From Theorem 8, we obtain:

Theorem 10 If p and q are nonnegative, q − 3p 6= 0 then the Thom poly-
nomial is a nonnegative combination of the [ΩI(F+

• , ξ)] ti’s.

The family [ΩI(F+
• , ξ)] ti is a one-parameter family of bases depending

on the parameter p/q.
Though the main theme of the present paper is the existence of one-

parameter family of bases in which every Legendrian Thom polynomial
has positive expansion, we shall give also some results on algebraic form
of [ΩI(F+

• , ξ)].
First, we come back to Case 1 from Example 7. This corresponds to

fixing the parameter to be 1, i.e. p = 1 and q = 1. This corresponds to
setting v1 = v2 = t. Geometrically, this means that we study the restriction
of the bundles W and ξ to the diagonal of Pn × Pn, or, we study W1 =
O(−1)⊕n and ξ = ξ1 = O(−2). Set ζ := O(−1). Then ξ

1
2 = ζ. From (10),

we have
A∗ ⊗ ζ +A⊗ ζ−1 = 0 . (25)

In general, when the bundle ξ admits a square root ζ it is convenient to
give another description of the space LG(V, ω). Let us define

W ′ = W ⊗ ζ−1 and V ′ = V ⊗ ζ−1 .

14



Then V ′ is equipped with a symplectic form with constant coefficients, and

V ′ = W ′ ⊕W ′∗ .

In our case,

X = Pn, W = O(−1)⊕n, and ξ = O(−2) .

Then W ′ and V ′ become trivial bundles:

W ′ = 1n , V ′ = 12n .

We have
LG(V, ω) = LG(C2n)×Pn , (26)

where LG(C2n) = LG(C2n, ω) and ω is the standard nondegenerate sym-
plectic form on C2n.

In algebraic expressions, we shall use Q̃-functions of [20] and their ge-
ometric interpretation from [19]. The reader can find in [18, Sect. 3] a
summary of their properties in the notation which will be also used here.

Let R′ denote the tautological bundle on LG(C2n). Under the identifi-
cation (26), R′ pulled back from LG(C2n) to LG(V, ω) is equal to R⊗ ζ−1.
We thus have

A⊗ ζ−1 = W ∗ ⊗ ζ −R⊗ ζ−1 = W ′∗ −R′ = 1n −R′ = R′∗ − 1n . (27)

The distinguished cell decomposition of LG(V, ω) = LG(C2n)×Pn is of the
product form. By the cohomological properties of Q̃-functions ([19]), the
basis of cohomology consists of the following functions

Q̃I(R′∗) · tj = Q̃I(R∗ ⊗ ξ
1
2 ) · c1(ξ−

1
2 )j ,

where I runs over strict partitions in ρ.
In this way, we obtain

Theorem 11 The Thom polynomial for a Legendre singularity class Σ is a
combination:

T Σ =
∑
j≥0

∑
I

αI,j Q̃I(A⊗ ξ−
1
2 ) · tj , (28)

where
t =

1
2
c1(ξ∗) ∈ H2(X,Z[

1
2

]) ,

I runs over strict partitions in ρ, and αI,j are nonnegative integers.

Remark 12 We get the result announced in [18, Remark 14], where it
should read “t = 1

2c1(ξ∗)”, and where we used the notation L∗ − 1dimL for
the virtual bundle A.
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9 Upper bounds of coefficients

In this section, we shall translate the positivity result in Theorem 8 into
restrictions for the coefficients of Thom polynomials.

Let us fix the value of the parameter. It turns out that the nonnegativity
of coefficients of the bases for some other values of the parameter can imply
upper bounds of the coefficients in the basis for the given parameter. We
plan to discuss this more systematically elsewhere. Here we consider the 3
bases in degree 2 from Cases 1,2 and 3 in Example 7. We shall call them
the first, second and third basis, respectively.

Let s = c1(ξ) and let us list the classes of degree 2. The first basis of the
Legendrian characteristic classes consists of:

c2(A+α1) = a2+
1
2
s a1 , −

1
2
c1(ξ1)c1(A) = −1

2
s a1 ,

(
−1

2
c1(ξ1)

)2

=
1
4
s2 ,

by Example 9 since c1(ξ1) = −2c1(O(1)) and c1(α1) = −c1(O(1)). The
second basis is

c2(A) = a2 , s c1(A) = s a1 , s2

since here α2 = 1. The third basis is

c2(A+α3) = a2 +
1
3
s a1 , −

1
3
c1(ξ3)c1(A) = −1

3
s a1 ,

(
−1

3
c1(ξ3)

)2

=
1
9
s2

since c1(ξ3) = −3c1(O(1)) and c1(α3) = −c1(O(1)).
The Thom polynomial of the singularity A3 is of the form

3(a2 +
1
2
s a1)− κ 1

2
s a1 ,

with κ ≥ 0, by the positivity in the first basis. The positivity in the second
basis gives the condition

3
2
− 1

2
κ ≥ 0 ,

that is κ ≤ 3. When we write the Thom polynomial in the third basis, we
see that the coefficient of −1

3s a1 is equal to κ− 1. It follows that κ ≥ 1.
Recall that the only Legendrian Thom polynomial of degree 2 is the one

of the singularity A3, displayed in the first basis as:

T A3 = 3Q̃2 + tQ̃1 ,

i.e. with κ = 1.

Another upper bound for the coefficients of the expansions of Legendrian
Thom polynomials can be obtained by the method of Example 17.
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10 Legendrian vs. classical Thom polynomials

In this section, we shall use the basis from Case 1 in Example 7, i.e., we put
t = v1 = v2.

Proposition 13 For a nonempty stable Legendre singularity class Σ the
Lagrangian Thom polynomial (i.e. T Σ evaluated at t = 0) is nonzero.

Proof. For a Legendre singularity class Σ consider the associated singularity
class of maps f : M → C from n-dimensional manifolds to curves (see [9, p.
729] and [10, p. 123]). We denote the related Thom polynomial by TpΣ.

According to [9, pp. 708–709], we have

TpΣ = T Σ · cn(T ∗M ⊗ f∗TC) . (29)

We know by [21, Theorem 4] that the Thom polynomial TpΣ is nonzero.
Moreover, it follows from the proof (loc.cit.) that TpΣ, specialized with
f∗TC = 1, i.e., t = 0, is also nonzero. The assertion follows from the
equation (29). 2

Consequently, we get an improvement of Theorem 8.

Corollary 14 For a nonempty stable Legendre singularity class Σ the (Leg-
endrian) Thom polynomial T Σ is nonzero.

Remark 15 Suppose that we are in the setting of (29). We shall use the
expansions of Legendrian Thom polynomials in the basis for v1 = v2 = t,
studied in the previous section. Set ξ := f∗TC. If A = T ∗M ⊗ ξ − TM ,
having the Thom polynomial presented as in (28), we want to compute the
Q̃-functions of

A⊗ ξ−
1
2 = (T ∗M ⊗ ξ − TM)∗ ⊗ ξ−

1
2 = E∗ − E ,

where E = TM ⊗ ξ−
1
2 . Since for every strict partition I,

Q̃I(E∗ − E) = QI(E∗) , (30)

where QI denotes the classical Schur Q-function [22], we get the desired
expression by changing any Q̃I(A⊗ ξ−

1
2 ) to QI(E∗).

The following procedure mimics the passing from the LHS to the RHS in
Eq. (29), where T Σ is given as a Z[t]-combination of the Q̃I(A⊗ ξ−

1
2 )’s, and

TpΣ is to be written as a Z-combination of the Schur functions SJ(T ∗M−ξ∗)
(for Schur functions in virtual bundles we refer to [15], and for Schur Q-
functions to [19]).

Procedure 16 We start from a Z[t]-combination of the polynomials dis-
cussed in Remark 15: Q̃I(A⊗ ξ−

1
2 ) = QI(T ∗M ⊗ ξ

1
2 ).
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• We write QI(T ∗M⊗ξ
1
2 ) as a combination of the SJ(T ∗M⊗ξ

1
2 )’s (here

we use a combinatorial rule from [23] decomposing Schur Q-functions
into S-functions);

• we expand any SJ(T ∗M ⊗ ξ
1
2 ) as a combination of the SK(T ∗M)ti’s

(here we use a formula from [14] for decomposition of the Schur poly-
nomials of twisted bundles);

• we multiply the obtained combination by cn(T ∗M ⊗ ξ) (here we use
the factorization formula for Schur functions from [3]); we eventually
get a combination of the SL(T ∗M − ξ∗)’s with the coefficients being
polynomials in n.

Example 17 We shall examine now how positivity of Schur function ex-
pansions of Thom polynomials for mappings Cn → C, proved in [21], implies
some upper bounds on the coefficients of a Legendrian Thom polynomial in
the expansion (28).

Let us consider a degree 2 cohomology class already considered in Section
9 of the form

3Q̃2 + κtQ̃1 , (31)

where κ is an integer.
We fix n ≥ 2. We apply Procedure 16 to (31):

(3Q̃2 + κtQ̃1)(T ∗M ⊗ ξ
1
2 ) · cn(T ∗M ⊗ ξ) =

(6(S2 + S12) + 2κtS1)(T ∗M ⊗ ξ
1
2 ) · cn(T ∗M ⊗ ξ) =(

6(S2 + S12) + 2t(κ− n)S1 + t2n(n− 2κ)
)
(T ∗M) · cn(T ∗M ⊗ ξ)

By the factorization formula, the last expression is equal to

6(S1n−13 + S1n−222) + (6n− κ)S1n2 + (
3
2
n2 − κn

2
)S1n+2 (32)

evaluated at T ∗M − ξ∗.
Suppose that for each n ≥ 2 we have in (32) a nonnegative combination

of Schur functions, i.e.

6n− κ ≥ 0 and
3
2
n2 − κn

2
≥ 0 .

This implies that κ ≤ 6.

11 Examples of Legendrian Thom polynomials

The Thom polynomials expanded in the basis {eI,a,b} (see Section 7) are
(the summands in bold represent the Lagrangian Thom polynomials):

18



A2: Q̃1

A3: 3Q̃2 + v2Q̃1

A4: 12Q̃3 + 3Q̃21 + (3v1 + 7v2)Q̃2 + (v1v2 + v2
2)Q̃1

D4: Q̃21.

The first (resp. last) expression means that the Thom polynomial of the
singularity A2 (resp. D4) written in all bases from the family is equal to Q̃1

(resp. Q̃21).
Similarly the Thom polynomial of the singularity P8 in all bases from

the family is equal to Q̃321. Next we have

A5: 60Q̃4 + 27Q̃31 + (6v1 + 16v2)Q̃21 + (39v1 + 47v2)Q̃3+
(6v2

1 + 22v1v2 + 12v2
2)Q̃2 + (2v2

1v2 + 3v1v
2
2 + v3

2)Q̃1

D5: 6Q̃31 + 4v2Q̃21,

and analogously to D5,

P9: 12Q̃421 + 12v2Q̃321.

Let us specialize v1 = v2 = t. The Thom polynomials for singularities
of codimensions lower or equal to six are listed in [18]. Here are the Legen-
drian Thom polynomials of the consecutive singularities A8, D8, E8, X9, P9

displayed in the notation from (28). Again, the summands in bold represent
the Lagrangian Thom polynomials. These formulas were communicated to
us by Kazarian.

A8 :

18840Q̃61 + 20160Q̃7 + 3123Q̃421 + 5556Q̃43 + 15564Q̃52+

t(71856Q̃6 + 3999Q̃321 + 55672Q̃51 + 34780Q̃42)+

t2(64524Q̃41 + 24616Q̃32 + 105496Q̃5) + t3(36048Q̃31 + 81544Q̃4)+

t4(8876Q̃21 + 34936Q̃3) + t57848Q̃2 + t6720Q̃1 ;

D8 :

1080Q̃61 + 315Q̃421 + 468Q̃43 + 1332Q̃52+

t(2754Q̃42 + 2952Q̃51 + 405Q̃321) + t2(1802Q̃32 + 3162Q̃41)+

t31618Q̃31 + t4344Q̃21 ;

E8 :

93Q̃421 + 108Q̃43 + 204Q̃52 + 72Q̃61 + t(99Q̃321 + 216Q̃51 + 414Q̃42)+

t2(246Q̃41 + 246Q̃32) + t3126Q̃31 + t424Q̃21 ;

X9 :

18Q̃52 + 27Q̃43 + t(42Q̃42 + 6Q̃51) + t2(21Q̃32 + 11Q̃41) + t36Q̃31 + t4Q̃21 ;
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P9 :

12Q̃421 + t12Q̃321 .

The lower codimensional classes are displayed in [18], where the expres-
sion for A7 should read:

A7 :

135Q̃321 + 1275Q̃42 + 2004Q̃51 + 2520Q̃6+

t(7092Q̃5 + 4439Q̃41 + 1713Q̃32) + t2(3545Q̃31 + 7868Q̃4)+

t3(1106Q̃21 + 4292Q̃3) + t41148Q̃2 + t5120Q̃1 .

12 Appendix: A positivity result for the Lagrange
Grassmann bundle

In this appendix, using the setting of Section 5, we shall give a certain new
positivity result.

We assume here that X is homogeneous. For any automorphism of X
which is covered by a map of ξ and αi’s, we obtain an automorphism of
LG(V, ω)→ X transforming the fibers to fibers.

Inspired by the paper [1] of Anderson, we consider some “large group”
action. Assume that the line bundles:

α∗i ⊗ αj for i < j and α∗i ⊗ α∗j ⊗ ξ for all i, j

are globally generated. Consider the group ΓB− of global sections of the
bundle B− → X.

Lemma 18 For each point x ∈ X, the restriction map from ΓB− to the
fiber B−x is surjective.

Proof. The group B−x is generated by two subgroups:

• B−W : the automorphisms of W inducing automorphisms of W ∗ ⊗ ξ
which preserve the flag F−• ,

• N−: the maps W →W ∗ ⊗ ξ which belong to

Sym2(W ∗)⊗ ξ ⊂W ∗ ⊗W ∗ ⊗ ξ = Hom(W,W ∗ ⊗ ξ) .

We identify the elements of B−W with matrix {bij}, whose entries over x ∈ X
belong to the fiber

Hom(αi, αj)x = (α∗i ⊗ αj)x
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for i ≤ j, or are zero for i > j. The group bundle B−W is generated by the
global sections. Similarly, the group bundle N− is a quotient bundle of

Hom(W,W ∗ ⊗ ξ) ∼= W ∗ ⊗W ∗ ⊗ ξ

isomorphic to Sym2(W ∗)⊗ ξ; therefore it is globally generated. This proves
the lemma. 2

For a strict partition J ⊂ ρ, let us denote by Ω−J the space of the stratum
ΩJ(F−• , ξ)→ X.

The lemma implies the following result:

Corollary 19 The group ΓB− acts on LG(V, ω), preserving fibers, and in
each fiber its orbits coincide with the strata of the stratification {Ω−J }.

Assume now, more precisely, that X is homogeneous with respect to a
linear group G and the transformation group acts on the line bundles ξ and
αi. For instance, X is a product of projective spaces, and each line bundle
involved is a tensor product of the O(j)’s.

We define H to be the subgroup of Aut(LG(V, ω)) generated by ΓB−

and G (it is the semidirect product of these groups). The variety H is
irreducible.

From the above, we obtain the following lemma:

Lemma 20 The group H acts transitively on each stratum Ω−J : G trans-
ports any fiber to any other fiber, and ΓB− acts transitively inside the fibers.

We now state the following positivity result.

Theorem 21 The intersection of any nonnegative cycle on LG(V, ω) with
any Z+

Iλ is represented by a nonnegative cycle.

Proof. Let Y be a nonnegative cycle on LG(V, ω). We shall find a translate
h · Y by an element h ∈ H which is transverse to any Z+

Iλ.
By Lemma 20, we can use the Bertini-Kleiman transversality theorem

[12] for H acting on Ω−J . By this theorem, there exists an open, dense
subset UJIλ ⊂ H with the following property: if h ∈ UJIλ then h · (Y ∩Ω−J )
is transverse to Z+

Iλ ∩ Ω−J . Set

UJ :=
⋂
I,λ

UJIλ. (33)

We get an open, dense subset UJ ⊂ H with the following property: if h ∈ UJ ,
then h · (Y ∩Ω−J ) is transverse to any Z+

Iλ∩Ω−J (transversality in Ω−J ). Since
Ω−J is transverse to all strata Z+

Iλ of LG(V, ω), this transversality holds also
in the whole ambient space. Set

U :=
⋂

strict J⊂ρ
UJ . (34)
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Pick h ∈ U . Then Y ′ = h · Y is transverse to all the Z+
Iλ’s.

The theorem now follows since by [6, Sect. 8.2] the intersection

Y ′ · [Z+
Iλ]

is represented by a nonnegative cycle. 2
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