10

ON THE CONSTRUCTION FK

John Milnor

(lecture notes from Princeton University, 1956)

1. Introduction

The reduced product construction of Ioan James [5] assigns to each CW-complex a new CW-complex having the same homotopy type as the loops in the suspension of the original. This paper will describe an analogous construction proceeding from the category of semi-simplicial complexes to the category of group complexes. The properties of this construction FK are studied in §2.

A theorem of Peter Hilton [4] asserts that the space of loops in a union $S_1 \vee \ldots \vee S_T$ of spheres splits into an infinite direct product of loops spaces of spheres. In §3 the construction of FK is applied to prove a generalization (Theorem 4) of Hilton's theorem in which the spheres may be replaced by the suspensions of arbitrary connected (semi-simplicial) complexes.

The author is indebted to many helpful discussions with John Moore.

2. The construction

It will be understood that with every semi-simplicial complex there is to be associated a specified base point.

Let K be a semi-simplicial complex with base point b_0 . Denote $S_0^n b_0$ by b_n . Let FK_n denote the free group generated by the elements of K_n with the single relation $b_n = 1$. Let the face and degeneracy operations ∂_i , s_i in $FK = UFK_n$ be the unique homomorphisms which carry the generators k_n into $\partial_i k_n$, $s_i k_n$ respectively. Thus each complex K determines a group complex FK.

It will be shown that FK is a loop space for EK, the suspension of K. (Definitions will be given presently.)

Alternatively let $F^+K_n \subseteq FK_n$ be the free monoid (= associative semi-group with unit) generated by K_n , with the same relation $b_n = 1$. Then the monoid complex F^+K is also a loop space for EK. This construction is the direct generalization of James' construction. (See Lemma 4.)

The <u>suspension</u> EK of the semi-simplicial complex K is defined as follows. For each simplex k_n , other than b_n , of K there is to be a sequence (Ek_n) , (s_0Ek_n) , $(s_0^2Ek_n)$, ... of simplexes of EK having dimensions $n+1, n+2, \ldots$ In addition there is to be a base point (b_0) and its degeneracies (b_n) . The symbols $(s_0^iEb_n)$ will be identified with (b_{n+i+1}) . The face and degeneracy operations in EK are given by

$$\begin{aligned} \partial_{j}(\mathbf{E}\mathbf{k}_{n}) &= (\mathbf{E}\,\partial_{j-1}\mathbf{k}_{n}) & (j > 0, n > 0) \\ \mathbf{s}_{j}(\mathbf{E}\mathbf{k}_{n}) &= (\mathbf{E}\mathbf{s}_{j-1}\mathbf{k}_{n}) & (j > 0) \\ \partial_{0}(\mathbf{E}\mathbf{k}_{n}) &= (\mathbf{b}_{n}), & \partial_{1}(\mathbf{E}\mathbf{k}_{0}) &= (\mathbf{b}_{0}) \\ \mathbf{s}_{0}(\mathbf{E}\mathbf{k}_{n}) &= (\mathbf{s}_{0}\mathbf{E}\mathbf{k}_{n}). \end{aligned}$$

The face and degeneracy operations on the remaining simplexes

 $(\mathbf{s}_{0}^{i}\mathbf{E}\mathbf{k}_{n}) = \mathbf{s}_{0}^{i}(\mathbf{E}\mathbf{k}_{n})$ are now determined by the identities

$$\partial_{j} \mathbf{s}_{0}^{i} = \begin{cases} \mathbf{s}_{0}^{i} \partial_{j-1} & (j > i) \\ \mathbf{s}_{0}^{i-1} & (j \leq i \neq 0) \end{cases}$$

$$s_{j}s_{0}^{i} = \begin{cases} s_{0}^{i}s_{j-1} & (j > i) \\ s_{0}^{i+1} & (j \le i) \end{cases}$$

It is not hard to show that this defines a semi-simplicial complex. The following lemma will justify calling it the suspension of K. Recall that the suspension of a topological space A with base point \mathbf{a}_0 is the identification space of $\mathbf{A} \times \mathbf{I}$ obtaining by collapsing $(\mathbf{A} \times \dot{\mathbf{I}}) \cup (\mathbf{a}_0 \times \mathbf{I})$ to a point.

Lemma 1. The geometric realization | EK | is canonically homeomorphic to the suspension of | K |.

(For the definition of realization see [6]. In fact the required homeomorphism is obtained by mapping the point $(|\mathbf{k}_n, \delta_n|, 1-t)$ of the suspension of $|\mathbf{K}|$, where δ_n has barycentric coordinates (t_0, \ldots, t_n) into the point $|(\mathbf{E}\mathbf{k}_n), \delta_{n+1}| \in |\mathbf{E}\mathbf{K}|$, where δ_{n+1} has barycentric coordinates $(1-t, tt_0, \ldots, tt_n)$.)

Next the space of loops on a semi-simplicial complex K will be discussed. If K satisfies the Kan extension condition then ΩK can be defined as in [7]. This definition has two disadvantages:

(1) Many interesting complexes do not satisfy the extension condition. In particular EK does not.

(2) There is no natural way (and in some cases no possible way) of defining a group structure in ΩK .

The following will be more convenient. A group complex G, or more generally a monoid complex, will be called a <u>loop space</u> for K if there exists a (semi-simplicial) principal bundle with base space K, fibre G, and with contractible total space T.

(By a principal bundle is meant a projection p of T onto K together with a left translation $G \times T - T$ satisfying

$$(\mathbf{g}_{\mathbf{n}}^{},\;\mathbf{g}_{\mathbf{n}}^{})$$
 . $\mathbf{t}_{\mathbf{n}}^{}=\mathbf{g}_{\mathbf{n}}^{},\;(\mathbf{g}_{\mathbf{n}}^{},\;\mathbf{t}_{\mathbf{n}}^{})$

where g_n . $t_n = t_n$ if and only if $g_n = l_n$; and where g_n . $t_n = t_n'$ for some g_n if and only if $p(t_n) = p(t_n')$. A complex is called contractible if its geometric realization is contractible. This is equivalent to requiring that the integral homology groups and the fundamental group be trivial.)

The existence of such a loop space for any connected complex K has been shown in recent work of Kan, which generalizes the present paper. The following Lemma is given to help justify the definition.

Lemma 2. If K satisfies the extension condition, and the group complex G is a loop space for K, then there is a homotopy equivalence $\Omega K = G$.

[†] Let K be the minimal complex of the n-sphere $n \ge 2$. Then it can be shown that there is no group complex structure in ΩK having the correct Pontrjagin ring.

The proof is based on the following easily proven fact (compare [7] p. 2-10): Every principal bundle can be given the structure of a twisted cartesian product. That is one can find a one-one function

$$\eta: G \times K \rightarrow T$$

satisfying $\partial_i \eta = \eta \partial_i$ for i > 0 and $s_i \eta = \eta s_i$ for all i, where $\partial_0 \eta$ is given by an expression of the form

$$\partial_{_0}\eta(\mathbf{g}_n\mathbf{k}_n) = \, \eta((\partial_{_0}\mathbf{g}_n) \; . \; (\tau\mathbf{k}_n), \; \partial_{_0}\mathbf{k}_n) \; .$$

(For this assertion the fibre must be a monoid complex satisfying the extension condition.) Thus the bundle is completely described by G and K together with the 'twisting function' $\tau: K_n \to G_{n-1}$; where τ satisfies the identities

$$\begin{aligned} \mathbf{s_i}^{\tau} &= \tau \, \mathbf{s_{i+1}} & \text{ (i } \geq \text{ 0),} & \partial_i \tau &= \tau \, \partial_{i+1} & \text{ i } \geq \text{ 1 ,} \\ \tau \mathbf{s_0} \mathbf{k_n} &= \mathbf{1_n} \text{ ,} & (\partial_0 \tau \mathbf{k_n}) \cdot (\tau \, \partial_0 \mathbf{k_n}) &= \tau \, \partial_1 \mathbf{k_n} \text{ .} \end{aligned}$$

Now a map $\overline{\tau}: \Omega K_{n-1} \to G_{n-1}$ is defined by $\overline{\tau}(k_n) = \tau(k_n)$. From the definition of ΩK and the above identities it follows that $\overline{\tau}$ is a map. From the homotopy sequence of the bundle it is easily verified that $\overline{\tau}$ induces isomorphisms of the homotopy groups, which proves Lemma 2.

To define a principal bundle with fibre FK and base space EK it is sufficient to define twisting functions $\tau: EK_{n+1} \to FK_n$. These will be given by

$$\tau(\mathbf{E}\mathbf{k}_{\mathbf{n}}) = \mathbf{k}_{\mathbf{n}}, \qquad \tau(\mathbf{s}_{0}^{\mathbf{i}}\mathbf{E}\mathbf{k}_{\mathbf{n}-\mathbf{i}}) = \mathbf{1}_{\mathbf{n}} \qquad (\mathbf{i} > 0).$$

Theorem 1. FK is a loop space for EK. In fact the twisted cartesian product $\{FK, EK, \tau\}$ has a contractible total space.

It is easy to verify that τ satisfies the conditions for a twisting function. Hence we have defined a twisted cartesian product, and therefore a principal bundle. Let T denote its total space. Note that T may be identified with $FK \times EK$ except that ∂_{Ω} is given by

$$\begin{split} &\partial_{0}(\mathbf{g}_{n},(\mathbf{Ek}_{n-1})) = (\partial_{0}\mathbf{g}_{n}.\ \mathbf{k}_{n-1},(\mathbf{b}_{n-1})) \\ &\partial_{0}(\mathbf{g}_{n},(\mathbf{s}_{0}^{i}\mathbf{Ek}_{n-i-1})) = (\partial_{0}\mathbf{g}_{n},(\mathbf{s}_{0}^{i-1}(\mathbf{Ek}_{n-i-1})) \quad (i \geq 1) \ . \end{split}$$

It will first be shown that the homology groups of T are trivial. This will be done by giving a contracting homotopy S for the chain complex C(T).

Lemma 3. Let G be the free group on generators x_{α} . Then the integral group ring ZG has as basis (over Z) the elements gx_{α} -g, where g ranges over all elements of G; together with the element 1.

The proof is not difficult. Now define S by the rules

$$S(1_n, (b_n)) = \begin{cases} 0 & (n \text{ even}) \\ (1_{n+1}, (b_{n+1})) & (n \text{ odd}) \end{cases}$$

$$S[(g_n, k_n, (b_n)) - (g_n, (b_n))]$$

$$= \sum_{i=0}^{n} (-1)^{i} [(s_{i}g_{n}, (s_{0}^{i}E\partial_{0}^{i}k_{n})) - (s_{i}g_{n}, (b_{n+1}))]$$

$$S[(g_{n}, (s_{0}^{r-1}Ek_{n-r})) - (g_{n}, (b_{n}))]$$

$$= \sum_{j=r}^{n} (-1)^{j} [(s_{j}g_{n}, (s_{0}^{j}E\partial_{0}^{j-r}k_{n-r})) - (s_{j}g_{n}, (b_{n+1}))]$$

where g_n ranges over all elements of the group FK_n .

It follows easily from Lemma 3 that the elements for which S has been defined form a basis for C(T), providing that k_n , k_{n-r} are restricted to elements other than b_n , b_{n-r} . However the above rules reduce to the identity 0=0 if we substitute $k_n = b_n$ or $k_{n-r} = b_{n-r}$. This shows that S is well defined. The necessary identity $Sd + dS = 1 - \epsilon$, where

 $\begin{aligned} dx_n &= \sum_{i=0}^n (-1)^i \partial_i x_n \quad \text{and where } \epsilon : C(T) = C(T) \text{ is the augmentation} \\ (\epsilon \sum \alpha_i (g_0, b_0) &= \sum \alpha_i (1_0, b_0)) \quad \text{can now-be verified by direct computation.} \end{aligned}$ Since this computation is rather long it will not be given here.

Proof that |T| is simply connected. A maximal tree in the CW-complex |T| will be chosen. Then $\pi_1(|T|)$ can be considered as the group with one generator corresponding to each 1-simplex not in the tree, and one relation corresponding to each 2-simplex.

As maximal tree take all 1-simplexes of the form $(\mathbf{s}_0\mathbf{g}_0, (\mathbf{Ek}_0))$. Then as generators of $\pi_1(|\mathbf{T}|)$ we have all elements $(\mathbf{g}_1, (\mathbf{Ek}_0))$ such that \mathbf{g}_1 is non-degenerate. The relation $\partial_1\mathbf{x} = (\partial_2\mathbf{x})$. $(\partial_0\mathbf{x})$ where $\mathbf{x} = (\mathbf{s}_1\mathbf{g}_1, (\mathbf{s}_0\mathbf{Ek}_0))$ asserts that

$$(g_1, (Ek_0)) = (g_1, (b_1)) \cdot (s_0 \partial_0 g_1, (Ek_0))$$

= $(g_1, (b_1)) \cdot$

From the 2-simplex $(s_0g_1, (Ek_1))$ we obtain

$$(g_1, (E \partial_0 k_1)) = (s_0 \partial_1 g_1, (E \partial_1 k_1)). (g_1 k_1, (b_1))$$

= $(g_1 k_1, (b_1)).$

Combining these two relations we have

$$(g_1, (b_1)) = (g_1k_1, (b_1)),$$

from which it follows easily that

$$(g_1, (b_1)) = 1$$

for all g_1 . In view of the first relation, this shows that |T| is simply connected, and completes the proof of theorem 1.

The following theorem shows that FK is essentially unique.

Theorem 2. Any principal bundle over EK with any group complex G as fibre is induced from the above bundle by a homomorphism FK - G.

Proof. We may assume that this bundle is a twisted cartesian product with twisting function $\tau:(EK)_{n+1} \to G_n$. Define the homomorphism $\overline{\tau}:FK \to G$ by $\overline{\tau}(k_n) = \tau(Ek_n)$. Since $\overline{\tau}(b_n) = \tau(Eb_n) = \tau(s_0(b_n)) = 1_n$ this defines a homomorphism. It is easy to verify that $\overline{\tau}$ commutes with the face and degeneracy operations, and induces a map between the two twisted cartesian products.

<u>Corollary</u>. <u>If G is also a loop space for EK then there is a homomorphism FK - G inducing an isomorphism between the Pontrjagin rings.</u>

This follows easily using [7], IV Theorem B.

Analogues of theorems 1 and 2 for the construction $F^+(K)$ can be proved using exactly the same formulas. The following shows the relationship between $F^+(K)$ and the construction of James.

Lemma 4. If K is countable then the realization $|F^+K|$ is homeomorphic to the reduced product of |K|.

In fact the product $(k_n, k_n', k_n'', \ldots) - k_n \cdot k' \cdot k'' \cdot \ldots$ maps $Kx \ldots xK$ into F^+K . Taking realizations we obtain a map $|K|x \ldots x|K| - |F^+K|$. From these maps it is easy to define a map of the reduced product of |K| into $|F^+K|$, and to show that it is a homeomorphism.

3. A theorem of Hilton

If A, B are semi-simplicial complexes with base points a_0 , b_0 let $A \times B$ denote the subcomplex $A \times [b_0] \cup [a_0] \times B$ of $A \times B$. Let $A \times B$ denote the complex obtained from $A \times B$ by collapsing $A \times B$ to a point. The notation $A^{(k)}$ will be used for the k-fold 'collapsed product' $A \times \ldots \times A$.

The free product $G \not\models H$ of two group complexes is defined by $(G \not\models H)_n = G_n \not\models H_n$. There is clearly a canonical isomorphism between the group complexes $F(A \lor B)$ and $FA \not\models FB$.

Lemma 5. The complex $F(A \vee B)$ is isomorphic (ignoring group structure) to $FA \times F(B \vee (B \times FA))$.

In fact we will show that $F(A \vee B)$ is a split extension:

$$I \rightarrow F(B \vee (B \times FA)) \rightarrow F(A \vee B) \rightarrow FA \rightarrow I$$
.

The collapsing map $A \vee B \stackrel{C}{\rightarrow} A$ induces a homomorphism c' of $F(A \vee B)$ onto FA. Denote the kernel of c' by F'. The inclusion $A \stackrel{i}{\rightarrow} A \vee B$ induces a homomorphism $i':FA \rightarrow F(A \vee B)$. Since c'i' is the identity it follows that $F(A \vee B)$ is a split extension of F' by FA.

We will determine this kernel F'_n for some fixed dimension n. Let a, b, ϕ range over the n-simplexes other than the base point of A, B, and FA respectively. Then $F(A \subseteq B)_n$ is the free group $\{a, b\}$ and F'_n is the normal subgroup generated by the b. By the Reidemeister-Schreier theorem (see [8]) F'_n is freely generated by the elements $w(a)bw(a)^{-1}$ where w(a) ranges over all elements of the free group $\{a\} = FA_n$. Thus

$$F'_n = \{b, \phi b \phi^{-1}\}$$
.

Now setting $[b, \phi] = b\phi b^{-1}\phi^{-1}$ and making a simple Tietze transformation (see for example [1]) we obtain

$$F'_{n} = \{b, [b, \phi]\}$$
.

Identify $[b, \phi]$ with the simplex $b \times \phi$ of $B \times F(A)$. Then we can identify F'_n with $F(B \vee (B \times FA))$. Since this identification commutes with face and degeneracy operations, this proves Lemma

Lemma 6. The group complex $F(B \times FA)$ is isomorphic to

$$F((B \times A) \vee (B \times A \times FA))$$
.

The inclusion A - FA induces a homomorphism

$$F(B \times A) - F(B \times FA)$$
.

A homomorphism

$$F(B \times A \times FA) \rightarrow F(B \times FA)$$

is defined by

$$b \times a \times \phi - (b \times a)(b \times \phi a)^{-1} (b \times \phi)$$
.

(This is motivated by the group identity [[b, a], ϕ] = [b, a] [b, ϕ a]⁻¹[b, ϕ].)

Combining these we obtain a homomorphism

$$F(B \times A) \nmid \tau F(B \times A \times FA) \rightarrow F(B \times FA)$$

which is asserted to be an isomorphism.

Using the same notation as in Lemma 5 and identifying $b \times a \times \phi$ with [[b, a], ϕ] it is evidently sufficient to prove the following.

Lemma 7. In the free group $\{a, b\}$ the subgroup freely generated by the elements $[b, \phi]$ is also freely generated by the elements [b, a] and $[[b, a], \phi]$.

The proof consists of a series of Tietze transformations. Details will not be given.

As a consequence of Lemma 6 we have:

Lemma 8. For each m the group complex $F(B \times FA)$ is isomorphic to

$$F(B \times A) * F(B \times A \times A) * \dots * F(B \times A^{(m)}) *$$
 $F(B \times A^{(m)} \times FA)$.

Proof by induction on m. For m = 1 this is just Lemma 6. Given this assertion for the integer m - 1 it is only necessary to show that $F(B \times A^{(m-1)} \times FA)$ is isomorphic to $F(B \times A^{(m)}) \times F(B \times A^{(m)} \times FA)$. But this follows immediately from Lemma 6 by substituting $B \times A^{(m-1)}$ in place of B.

with A connected, then there is an inclusion homomorphism

$$F(\vee_{i=1}^{\infty} B \times A^{(i)}) \rightarrow F(B \times F(A))$$

which is a homotopy equivalence.

Proof. Every element of $F(\vee_{i=1}^{\infty} B \times A^{(i)})$ is already contained in

$$\mathbf{F}(\vee_{i=1}^{\infty}\mathbf{B} \times \mathbf{A}^{(i)}) = \mathbf{F}(\mathbf{B} \times \mathbf{A}) * \dots * \mathbf{F}(\mathbf{B} \times \mathbf{A}^{(m)})$$

for some m. Hence by Lemma 8 it may be identified with an element of $F(B \times FA)$. Since A is connected, the 'remainder term' $B \times A^{(m)} \times FA$ has trivial homology groups in dimensions less than m. From this it follows easily that the above inclusion induces isomorphisms of the homotopy groups in all dimensions.

Remark. The complex B may be eliminated from Theorem 3 by taking B as the sphere S^0 , and noting the identity $S^0 \times K = K$.

Combining theorem 3 with Lemma 5 we obtain the following

Corollary. If A is connected then there is a homotopy equivalence

$$\mathbf{F}(\mathbf{A}) \times \mathbf{F}(\vee_{\mathbf{i}=0}^{\infty} \mathbf{B} \times \mathbf{A}^{(\mathbf{i})}) \subset \mathbf{F}(\mathbf{A} \vee \mathbf{B})$$
.

This corollary will be the basis for the following.

$$A_1^{(n_1)} \times \ldots \times A_r^{(n_r)}.$$

The number of factors of a given form is equal to the Witt number

$$\phi(n_1, \ldots, n_r) = \frac{1}{n} \sum_{\mathbf{d} \mid \delta} \frac{\mu(\mathbf{d})(n/\mathbf{d})!}{(n_1/\mathbf{d})! \ldots (n_r/\mathbf{d})!}$$

where
$$n = n_1 + \ldots + n_r$$
, $\delta = GCD(n_1, \ldots, n_r)$.

Proof. For $n=1, 2, 3, \ldots$ define complexes A_i , to be called 'basic products of weight n' as follows, by induction on n. The given complexes A_1, \ldots, A_r are the basic products of weight 1. Suppose that

$$A_1, \ldots, A_r, \ldots, A_{\alpha}$$

are the basic products of weight less than n. To each $i=1,\ldots,r,\ldots,\alpha$ assume we have defined a number $e(i)\leq i$, where $e(1)=\ldots=e(r)=0$. Then as basic products of weight n take all expressions $A_i \not = A_j$ where weight A_i + weight A_j = n and $e(i)\leq j\leq i$. Call these new complexes $A_{\alpha+1},\ldots,A_{\beta}$ in any order. If $A_h=A_i \not = A_j$ define e(h)=j. (For this discussion we must consider complexes such as $(A \not = B) \not = C$ and $A \not = C$ to be distinct!) This completes the construction of the A_i .

For each $m \ge 1$ define

$$R_{\mathbf{m}} = F(\overset{}{\smile}_{\substack{h \geq \mathbf{m} \\ e(h) \leq \mathbf{m}}} A_{\mathbf{h}}).$$

Thus
$$R_1 = F(A_1 \vee \ldots \vee A_r)$$
.

Lemma 9. There is a homotopy equivalence

$$F(A_m) \times R_{m+1} \subseteq R_m$$
.

Note that
$$R_m = F(A_m \lor B)$$
, where $B = \lor_{h>m} A_h$.

By the corollary to theorem 3 there is a homotopy equivalence

$$(\mathbf{F}(\mathbf{A}_{\mathbf{m}}) \times \mathbf{F}(\vee_{i=0}^{\infty} \mathbf{B} \times \mathbf{A}_{\mathbf{m}}^{(i)}) \subset \mathbf{F}(\mathbf{A}_{\mathbf{m}} \vee \mathbf{B}) = \mathbf{R}_{\mathbf{m}}.$$

Substituting in the definition of B and using the distributive law

$$(A \vee B) \times C = (A \times C) \vee (B \times C)$$
,

the second factor of the first expression becomes

$$F(\stackrel{\infty}{\underset{i=0}{\overset{}{\smile}}} \stackrel{h>m}{\underset{e(h) \leq m}{\overset{}{\smile}}} A_h \times A_m^{(i)})$$
.

But (filling in parentheses correctly) this is just

$$F(\searrow_{h>m} A_{h}) = R_{m+1},$$

$$e(h) \leq m$$

which proves Lemma 9.

Now it follows by induction that there is a homotopy equivalence

$$\mathbf{F}(\mathbf{A}_1) \times \mathbf{F}(\mathbf{A}_2) \times \ldots \times \mathbf{F}(\mathbf{A}_m) \times \mathbf{R}_{m+1} \subseteq \mathbf{R}_1 = \mathbf{F}(\mathbf{A}_1 \times \ldots \times \mathbf{A}_r)$$
.

This defines an inclusion of the weak infinite cartesian product

 $\Pi_{i=1}^{\infty}F(A_i)$ into R_1 . Since A_1,\ldots,A_r are connected, it follows easily that the 'remainder terms' R_m are k-connected where $k \to \infty$ as $m \to \infty$. From this it follows that the above inclusion map induces isomorphisms of the homotopy groups in all dimensions. This proves the first part of theorem 4.

Let $\phi(n_1, \ldots, n_r)$ denote the number of A_h having the form $A_1^{(n_1)} \times \ldots \times A_r^{(n_r)}$. To compute these numbers consider the free Lie ring L on generators $\alpha_1, \ldots, \alpha_r$. Corresponding to each 'basic product' $A_h = A_i \times A_j$ define an element $\alpha_h = [\alpha_i, \alpha_j]$ of L, for $h = r+1, r+2, \ldots$. Then the elements α_h obtained in this way are exactly the standard monomials of M. Hall [2] and P. Hall [3]. M. Hall has proved that these elements form an additive basis for L.

The number of linearly independent elements of L which involve each of the generators $\alpha_1, \ldots, \alpha_r$ a given number n_1, \ldots, n_r of times has been computed by Witt [9]. Since his formula is the same as that in theorem 4, this completes the proof.

In conclusion we mention one more interesting consequence of theorem 3.

Theorem 5. If A is connected then the complex EFA has the same homotopy type as $\bigvee_{i=1}^{\infty} EA^{(i)}$.

The proof is based on the following lemma, which depends on Theorem 1.

Lemma 10. If A is connected, there is a homotopy equivalence

EA WFA.

In fact the inclusion is defined by $(s_0^i Ea_n) - s_0^i (a_n, l_{n-1}, \ldots, l_0)$. It is easily verified that this is a map, and that it induces a map of the twisted cartesian product T into the twisted cartesian product W. Since both total spaces are acyclic, it follows from [7], IV Theorem A that the homology groups of EA map isomorphically into those of $\overline{W}FA$. Since both spaces are simply connected, this completes the proof of Lemma 10.

Now from Theorem 3 we have a homotopy equivalence

$$\overline{W}F(\vee_{i=1}^{\infty}A^{(i)})\subset \overline{W}FFA$$
.

In view of Lemma 10, and the identity

$$E(A \vee B) = EA \vee EB$$
,

this completes the proof.

References

- 1. R. H. Fox, Discrete groups and their presentations (lecture notes) Princeton (1955).
- 2. M. Hall, 'A basis for free Lie rings and higher commutators in free groups', Proc. A. M. S. 1 (1950) 575-581.
- 3. P. Hall, 'A contribution to the theory of groups of prime power order', Proc. London Math. Soc. 36 (1934) 29-95.
- 4. P. J. Hilton, 'On the homotopy groups of the union of spheres', Jour. London Math. Soc. 30 (1955) 154-172.
- 5. I. M. James, 'Reduced product spaces', Ann. of Math. 62 (1955) 170-197.

- J. Milnor, The geometric realization of a semi-simplicial complex (mimeographed) Princeton (1955).
- J. Moore, Algebraic homotopy theory (lecture notes) (1955-56).
- K. Reidemesiter, Eifuhrung in die kombinatorische Topologie, Braunschweig (1932).
- E. Witt, 'Treue Darstellung Liescher Ringe', J. Reine Angew. Math. 177 (1937) 152-160.