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ON THE CONSTRUCTION FK
John Milnor

(lecture notes from Princeton University, 1956)

1. Introduction

The reduced product construction of Ioan James [5] assigns
to each CW-complex a new CW-complex having the same homotopy
type as the loops in the suspension of the original. This paper will
describe an analogous construction proceeding from the category
of semi-simplicial complexes to the category of group complexes.
The properties of this construction FK are studied in §2.

A theorem of Peter Hilton [4] asserts that the space of loops
in a union 81 Voo,V Sr of spheres splits into an infinite direct
product of loops spaces of spheres. In §3 the construction of FK
is applied to prove a generalization (Theorem 4) of Hilton's theorem
in which the spheres may be replaced by the suspensions of arbitrary
connected (semi-simplicial) complexes.

The author is indebted to many helpful discussions with

John Moore.

2. The construction

It will be understood that with every semi-simplicial

complex there is to be associated a specified base point.
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Let K be a semi-simplicial complex with base point bo‘
Denote Sl;b0 by bn' Let FKn denote the free group generated
by the elements of Kn with the single relation bn =1, Let the
face and degeneracy operations ai, 8, in FK= UFKn be the
unique homomorphisms which carry the generators kn into
aikn, sikn respectively. Thus each complex K determines a
group complex FK.

It will be shown that FK is a loop space for EK, the
suspension of K. (Definitions will be given presently. )

Alternatively let F+Kn - FKn be the free monoid
(= associative semi-group with unit) generated by Kn’ with the
same relation b_= 1. Then the monoid complex F*K is alsoa
loop space for EK. This construction is the direct generalization
of James' construction. (See Lemma 4.)

The suspension EK of the semi-simplicial complex K is

defined as follows. For each simplex kn, other than bn’ of K
there is to be a sequence (Ekn), (soEkn)’ (szEkn), ... of
simplexes of EK having dimensions n+ 1, n + 2, . In
addition there 1s to be a base point (b ) and its degeneracies (b ).
The symbols (s Eb ) will be 1dent1f1ed with (b The face

and degeneracy operatlons in EK are given by

nt+i+1)

aj(Ekn) = (Eaj_lkn) (j > 0, n> 0)
sj(Ekn) = (Esj_lkn) (i> 0)
3, (Ek) = (b)) , 2, (Ek ) = (b,)
sO(Ekn) = (soEkn) .
The face and degeneracy operations on the remaining simplexes
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(S;Ekn) = St(Ekn) are now determined by the identities

i D~
asi _ g Soaj_l (] > 1)
e s;_l (i=i#0)
s's (j> i)
; 0°j-1
ol - |
i+1 L
s’ (j=1)

It is not hard to show that this defines a semi-simplicial
complex. The following lemma will justify calling it the suspension
of K. Recall that the suspension of a topological space A with
base point a is the identification space of A X I obtaining by
collapsing (A X I) U (a,x I) toa point.

Lemma 1. The geometric realization |EK| is canonically

homeomorphic to the suspension of IK]

(For the definition of realization see [6]. Infact the required
homeomorphism is obtained by mapping the point (Ikn, Gn, , 1-t)
of the suspension of |K| , Where Gn has barycentric coordinates
(to, .
has barycentric coordinates (1-t, tt o e ttn).)

.., t ) into the point I(Ekn), 6n+1| € |EK|, where 5 11

Next the space of loops on a semi-simplicial complex K
will be discussed. If K satisfies the Kan extension condition then
QK can be defined as in [7]. This definition has two disadvantages:

(1) Many interesting complexes do not satisfy the extension

condition. In particular EK does not.
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(2) There is no natural way (and in some casesT no possible way)
of defining a group structure in QK.

The following will be more convenient. A group complex G,
or more generally a monoid complex, will be called a loop space
for K if there exists a (semi-simplicial) principal bundle with
base space K, fibre G, and with contractible total space T.

(By a principal bundle is meant a projection p of T onto

K together with a left translation G X T — T satisfying
? —_— t
8, -8)-t, =86, (. t)
where g, tn = tn if and only if g, = ln; and where g, tn = tn

for some g, if and only if p(tn) = p(t;l). A complex is called

contractible if its geometric realization is contractible. This is

equivalent to requiring that the integral homology groups and the
fundamental group be trivial. )

The existence of such a 1oop space for any connected
complex K has been shown in recent work of Kan, which
generalizes the present paper. The following Lemma is given to

help justify the definition.

Lemma 2. If K satisfies the extension condition, and the

group complex G is a loop space for K, then there is a homotopy

equivalence K =~ G.

t Let K be the minimal complex of the n-sphere n = 2. Then
it can be shown that there is no group complex structure in QK
having the correct Pontrjagin ring.
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The proof is based on the following easily proven fact
(compare [7] p. 2-10): Every principal bundle can be given the
structure of a twisted cartesian product. That is one can find a

one-one function
n:GXK-T

satisfying ain = nai for i> 0 and U EN for all i, where

aon is given by an expression of the form
o mg k)=mn((2eg). (7k), 3 k).

(For this assertion the fibre must be a monoid complex satisfying
the extension condition.) Thus the bundle is completely described
by G and K together with the 'twisting function' T:Kn -~ Gn—l;
where 7 satisfies the identities

Tsokn = ln y (aOTkn) . (Taokn) = Talkn R

Now amap 7 : QKn_l ~ G, _, is defined by ?(kn) = T(kn).
From the definition of QK and the above identities it follows that
7T is a map. From the homotopy sequence of the bundle it is easily
verified that 7 induces isomorphisms of the homotopy groups,
which proves Lemma 2.

To define a principal bundle with fibre FK and base space
EK it is sufficient to define twisting functions T:EKn 1 FKn'
These will be given by

i .
T(Ekn) = kn , 7(s oEkn—i) = 1n (i> 0).
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Theorem 1. FK is a loop space for EK. In fact the
twisted cartesian product {FK, EK, 7} has a contractible
total space.

It is easy to verify that 7 satisfies the conditions for a
twisting function. Hence we have defined a twisted cartesian
product, and therefore a principal bundle. Let T denote its
total space. Note that T may be identified with FK X EK
except that 80 is given by

3 (g, (Ek =g .k 1,0 )
2 (g,(5.Ek . N =g (s Ek . ) 1=1)
0°n’ V0 n-i-1 0°n’ ‘o n-i-1 :
It will first be shown that the homology groups of T are
trivial. This will be done by giving a contracting homotopy S for

the chain complex C(T).

Lemma 3. Let G be the free group on generators x o

Then the integral group ring ZG has as basis (over Z) the

elements gx o & where g ranges over all elements of G;

together with the element 1.

The proof is not difficult. Now define S by the rules

0 (n even)

S(lny (bn)) = {
1,k ) (nodd)

8l(g .k, (b)) - (&, b))
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n . . .

S[e., (6" 'Ex_ ) - (g, (b )]
n 0 n-r n n

n . N

_ 21y ] -r -

= 2 (D(s8, (LE K ) - (8,8, (b )]

j=r

where g, ranges over all elements of the group FKn.

It follows easily from Lemma 3 that the elements for which
S has been defined form a basis for C(T), providing that kn’
the above rules reduce to the identity 0 = 0 if we substitute
k =b_or k__=b_ . This shows that S is well defined.

n n n-r n-r
The necessary identity Sd + dS=1 - £, where

k p are restricted to elements other than bn’ bn—r' However

n .
dxn = 2 (-l)laixn and where ¢ :C(T) = C(T) is the augmentation
i=0

(e 2 ai(go’bo) =2 ai(lo’ bo)) can now*be verified by direct compu-
tation. Since this computation is rather long it will not be given
here.

Proof that |T| is simply connected. A maximal tree in
the CW-complex |T| will be chosen. Then 111(|T l) can be
considered as the group with one generator corresponding to each
1-simplex not in the tree, and one relation corresponding to each
2-simplex.

As maximal tree take all 1-simplexes of the form
(s 8o’ (Eko))‘ Then as generators of 1r1( ITI) we have all elements
(gl, (Eko)) such that g, is non-degenerate. The relation
alx = (azx) . (aox) where x = (slgl, (sOEkO)) asserts that

€, Bk ) = (€, (b)). (5,3, (Ek )
= (g19 (bl)) .
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From the 2-simplex (sugl, (Ekl)) we obtain

(g, (Ed k) =(s 2 g,(EdK).(gk,(b)
= (glkl’ (bl)) .
Combining these two relations we have

€, (b)) = @&

kb)),

from which it follows easily that
(gl’ (bl)) =1

for all g,- In view of the first relation, this shows that |T| is
simply connected, and completes the proof of theorem 1.

The following theorem shows that FK is essentially

unique.

b

Theorem 2. Any principal bundle over EK with any grou

complex G as fibre is induced from the above bundle by a homo-

morphism FK = G.

Proof. We may assume that this bundle is a twisted
cartesian product with twisting function ‘i’:(EK)n - Gn' Define
the homomorphism T7:FK = G by ?(kn) = T(Ekn). Since
Tr(bm) = T(Ebn) = 'r(so(bn)) = ln this defines a homomorphism. It
is easy to verify that 7 commutes with the face and degeneracy
operations, and induces a map between the two twisted cartesian

products.
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Corollary. I G is also a loop space for EK then there

is a homomorphism FK — G inducing an isomorphism between

the Pontrjagin rings.

This follows easily using [7], IV Theorem B.

Analogues of theorems 1 and 2 for the construction F+(K)
can be proved using exactly the same formulas. The following
shows the relationship between F+(K) and the construction of

James.

Lemma 4. K K is countable then the realization |F K|

is homeomorphic to the reduced product of |K|

In fact the product (kn’ k;l, k]';, cel) kn. k'.k". ...
maps Kx ... xK into F+K. Taking realizations we obtain a map
|K|x - le] - |F+K|. From these maps it is easy to define a
map of the reduced product of IKI into |F+K|, and to show that

it is a homeomorphism.

3. A theorem of Hilton

If A, B are semi-simplicial complexes with base points
a, b, let A B denote the subcomplex A X [bo] u [ao] X B
of AX B. Let A X B denote the complex obtained from A X B
by collapsing A ¥ B to a point. The notation A(k) will be used
for the k-fold 'collapsed product' A X . , X A,

The free product G *H of two group complexes is defined
by (G * H)n = Gn * Hn' There is clearly a canonical isomorphism
between the group complexes F(A - B) and FA ¥ FB.
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Lemma 5. The complex F(A v B) is isomorphic
(ignoring group structure) to FA X F(B Vv (B X FA)).

In fact we will show that F(A v B) is a split extension:
I-F(BYvY (BX FA) -F(AvY B)-FA-—-1.

The collapsing map A VY B < A induces a homomorphism c' of
F(.f\ v B) onto FA. Denote the kernel of c¢' by F'. The inclusion
A L A Vv B induces a homomorphism i':FA -~ F(A v B). Since
c'i' is the identity it follows that F(A v B) is a split extension
of F' by FA.

We will determine this kernel F]'1 for some fixed dimension
n. Let a, b, ¢ range over the n-simplexes other than the base
point of A, B, and FA respectively. Then F(A Vv B)n is the
free group {a, b} and F: is the normal subgroup generated by
the b. By the Reidemeister-Schreier theorem (see [8]) F;l is
freely generated by the elements w(a)bw(a)_1 where w(a) ranges

over all elements of the free group {a} = FA . Thus
F' = {b, ¢bg '} .
n

Now setting [b, ¢] = bob '¢”' and making a simple Tietze trans-

formation (see for example [1]) we obtain
F' = {b,[b, ¢]!}.

Identify [b, ¢] with the simplex b X ¢ of B X F(A). Then we
can identify F;x with F(B v (B X FA)). Since this identification

commutes with face and degeneracy operations, this proves Lemma
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Lemma 6. The group complex F(B X FA) is isomorphic

F((B X A) v (B X A X FA)).
The inclusion A = FA induces a homomorphism
F(B X A) ~ F(B X FA).
A homomorphism
F(B X A X FA) -~ F(B X FA)
is defined by
bX aX ¢~ (bX a)bxX ¢a) ' (bX ¢).
(This is motivated by the group identity [[b, a], ¢] = [b, a]

[b, ¢a] '[b, ¢].)

Combining these we obtain a homomorphism
F(B X A) X 7F(B X A X FA) — F(B X FA)

which is asserted to be an isomorphism.
Using the same notation as in Lemma 5 and identifying
b X a X ¢ with [[b, a], ¢] it is evidently sufficient to prove the

following.

Lemma 7. Inthe free group {a, b} the subgroup freely

generated by the elements [b, ¢] is also freely generated by the
elements [b, a] and [[b, a], ¢].
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The proof consists of a series of Tietze transformations.

Details will not be given.

As a consequence of Lemma 6 we have:

Lemma 8. For each m the group complex F(B X FA)

is isomorphic to

FBX A) XF(BX AX A) k... X F(B X A(m))*

FB x A x Fa) .

Proof by induction on m. For m =1 this is just Lemma 6.
Given this assertion for the integer m - 1 it is only necessary to
show that F(B X A(m_l) X FA) is isomorphic to F(B X A(m)) *
F(B X A(m) X FA). But this follows immediately from Lemma 6
by substituting B X A(m_l) in place of B.

Theorem 3. If A and B are semi-simplicial complexes

with A connected, then there is an inclusion homomorphism

riv” . Bx AD) - pB x F(A))

)
i=1

which is a homotopy equivalence,

o
i

Proof. Every element of F(v,_,B X A(l)) is already
contained in

FvZ Bx AD)_ pB x A) k... ¥ F(B x A™)

L
i=1
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for some m. Hence by Lemma 8 it may be identified with an
element of F(B X FA). Since A is connected, the 'remainder
term' B X A(m) X FA has trivial homology groups in dimensions
less than m. From this it follows easily that the above inclusion

induces isomorphisms of the homotopy groups in all dimensions.

Remark. The complex B may be eliminated from
Theorem 3 by taking B as the sphere SO, and noting the identity
s?x K=K

Combining theorem 3 with Lemma 5 we obtain the following

Corollary. If A is connected then there is a homotopy

equivalence

Fa) x F(v Bx A cFravp).

This corollary will be the basis for the following.

Theorem 4, Let A1’ s Ar be connected complexes.

Then F(A1 Vooa. Y Ar) has the same homotopy type as a weak

infinite cartesian product H:IF(Ai) where each Ai’ i>r, has

the form
AM) x ox Al
1 r

The number of factors of a given form is equal to the Witt number

21 #(d)(n/d)!
A I O e W)
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proeey + =
where n n +... +nr, 6 GCD(nl, e nr).

Proof. For n=1, 2, 3, ... define complexes Ai, to be
called 'basic products of weight n' as follows, by induction on n,
The given complexes Al, ceey Ar are the basic products of

weight 1. Suppose that

are the basic products of weight less than n. To each

i=1, ..., r, ..., a assume we have defined a number e(i) < i,
where e(l) =... = e(r) = 0. Then as basic products of weight n
take all expressions Ai X Aj where weight Ai + weight Aj =n
and e(i) = j < i. Call these new complexes Aa+1’ ceey AB in
any order. If Ah = Ai x Aj define e(h) = j. (For this discussion
we must consider complexes such as (A X B) X C and

A X (B X C) to be distinct!) This completes the construction of

the A..
i

For each m = 1 define

Rm = F(thm Ah) ’
e(h) < m

Thus R, = F(A V... VA).

Lemma 9. There is a homotopy equivalence

X C
FI(Am) Rm+1 Rm
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Note that R = F(Am Vv B), where B = Yh> m Ah'

e(h) < m
By the corollary to theorem 3 there is a homotopy equivalence

* (1) v R —
(F(Am) x F(VizoB x Am) c F(Am B) = Rm
Substituting in the definition of B and using the distributive law
(AVB)XC=(AXC)v (BX (),

the second factor of the first expression becomes

co

(i)
F(ico Vh>m  2n™ Am)-

e(h) < m
But (filling in parentheses correctly) this is just

F( R

Vh>m Ah)= m+1°?
e(h) = m

which proves Lemma 9.

Now it follows by induction that there is a homotopy

equivalence

F(A)X F(A)X ... *xFA )XR_,,CR =

F(A:l VoL VAI_).

This defines an inclusion of the weak infinite cartesian product
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II;;lF(Ai) into R . Since A, ..., A_ are connected, it
follows easily that the 'remainder terms' Rm are k-connected
where k=~ © as m — ®©, From this it follows that the above
inclusion map induces isomorphisms of the homotopy groups in all
dimensions. This proves the first part of theorem 4.

Let qb(nl, cee, nr) denote the number of Ah having the

form Agnl) x .. X Ainr). To compute these numbers consider
the free Lie ring L on generators al, ceey ar. Corresponding

to each 'basic product’ Ah = Ai X Aj define an element

o = [ai, a].] of L, for h=r+1, r+2, ... . Then the elements

Oth obtained in this way are exactly the standard monomials of
M. Hall [2] and P. Hall [3]. M. Hall has proved that these elements
form an additive basis for L.

The number of linearly independent elements of L which
involve each of the generators @, ..., @ a given number

n n, of times has been computed by Witt [9]. Since his

RIRER
formula is the same as that in theorem 4, this completes the proof.

In conclusion we mention one more interesting consequence
of theorem 3.

Theorem 5. If A is connected then the complex EFA has

—

the same homotopy type as v;ilEA(i).

The proof is based on the following lemma, which depends
on Theorem 1.

Lemma 10. If A is connected, there is a homotopy

equivalence

EA < WFA.
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In fact the inclusion is defined by (siOEan) - sz(an, 11
10). It is easily verified that this is a map, and that it induces
a map of the twisted cartesian product T into the twisted cartesian
product W. Since both total spaces are acyclic, it follows from
[7], IV Theorem A that the homology groups of EA map isomor-
phically into those of WFA. Since both spaces are simply connected,

this completes the proof of Lemma 10.
Now from Theorem 3 we have a homotopy equivalence
wre ™ Al o w
WF(Vi_lA ) € WFFA. .
In view of Lemma 10, and the identity
E(A ™~ B)=EA vV EB,

this completes the proof.
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